Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). COVID-19 is now recognized as a multiorgan disease with a broad spectrum of manifestations. A substantial proportion of individuals who have recovered from COVID-19 are experiencing persistent, prolonged, and often incapacitating sequelae, collectively referred to as long COVID. To date, definitive diagnostic criteria for long COVID diagnosis remain elusive. An emerging public health threat is neuropsychiatric long COVID, encompassing a broad range of manifestations, such as sleep disturbance, anxiety, depression, brain fog, and fatigue. Although the precise mechanisms underlying the neuropsychiatric complications of long COVID are presently not fully elucidated, neural cytolytic effects, neuroinflammation, cerebral microvascular compromise, breakdown of the blood–brain barrier (BBB), thrombosis, hypoxia, neurotransmitter dysregulation, and provoked neurodegeneration are pathophysiologically linked to long-term neuropsychiatric consequences, in addition to systemic hyperinflammation and maladaptation of the renin–angiotensin–aldosterone system. Vitamin D, a fat-soluble secosteroid, is a potent immunomodulatory hormone with potential beneficial effects on anti-inflammatory responses, neuroprotection, monoamine neurotransmission, BBB integrity, vasculometabolic functions, gut microbiota, and telomere stability in different phases of SARS-CoV-2 infection, acting through both genomic and nongenomic pathways. Here, we provide an up-to-date review of the potential mechanisms and pathophysiology of neuropsychiatric long COVID syndrome and the plausible neurological contributions of vitamin D in mitigating the effects of long COVID.