Soil organic carbon (SOC) concentration is a useful soil property with which to guide agricultural applications of chemical inputs. To enable this, simple, accurate, rapid and inexpensive methods are needed to produce maps of surface SOC concentrations. Researchers have investigated estimates of soil surface properties from remotely sensed information as a means of rapidly quantifying and monitoring some surface soil properties, such as SOC. The objective of this paper is to review the potential and limitations of remotely sensed data for mapping and evaluating SOC. Several statistical methods including simple regression models, the 'soil line' approach, principal component analysis and geostatistics have been applied to data to investigate the accuracy of such estimates. A review of the literature shows that predictive equations are not universal and require new regression models for every scene. An important benefit of remotely sensed data is to suggest a sampling strategy that can lead to improved representation of spatial heterogeneity in SOC.