Abstract:Simulink, an extension of MATLAB, is a graphics-based model development environment for system modeling and simulation. Simulink's user-friendly features, including block (data process) and arrow (data transfer) objects, a large number of existing blocks, no need to write codes, and a drag and drop interface, provide modelers with an easy development environment. In this study, a Tank model was developed using Simulink and applied to a rainfall-runoff simulation for a study watershed to demonstrate the potential of Simulink as a tool for hydrological analysis. In the example given here, the Tank model was extended by two sub-modules representing evapotranspiration and storage-runoff distribution. In addition, model pre-and post-processing, such as input data preparation and results plotting, was carried out in MATLAB. Moreover, model parameters were calibrated using MATLAB optimization tools without any additional programming for linking the calibration algorithms and the model. The graphical representation utilized in the Simulink version of the Tank model helped us to understand the hydrological interactions described in the model, and the modular structure of the program facilitated the addition of new modules and the modification of existing modules as needed. From the study, we found that Simulink could be a useful and convenient environment for hydrological analysis and model development.