With the continuous production of oil wells, the reservoir properties, such as permeability and porosity, are changing accordingly, and the reservoir heterogeneity is also enhanced. This development is vulnerable to the problem of the one-way advance of injected water and low efficiency of water flooding. The interwell connectivity between injection and production wells controls the flow capacity of the subsurface fluid. Therefore, the analysis of interwell connectivity helps to identify the flow direction of injected water, which is of great significance for guiding the profile control and water plugging in the later stage of the oilfield. In this study, based on the principle of mass conservation, a capacitance model considering the bottom-hole flowing pressure was established and solved by using the production dynamic data of injection–production wells. Then, the validity of the capacitance model was verified by numerical simulation, and the influences of well spacing, compression coefficient, frequent switching wells, injection speed, and bottom-hole flowing pressure on interwell connectivity were eliminated. Finally, a practical mine technique for inversion of connectivity between wells using dynamic data was developed. The advantage of this model is that the production dynamic data used in the modeling process are easy to obtain. It overcomes the shortcomings of previous models and has a wider range of applications. It can provide a theoretical basis for the formulation of profile control and water-plugging schemes in the high-water-cut period.