À minha família, com amor, admiração e gratidão por sua compreensão, carinho, presença e incansável apoio ao longo do período de elaboração deste trabalho.
AGRADECIMENTOSAo professor, orientador e amigo Rodrigo Capobianco Guido, que, nos anos de convivência, muito me ensinou, contribuindo para meu crescimento científico, intelectual e profissional.Agradeço por toda paciência nos momentos difíceis e pela grande quantidade de horas dispendida em suas reuniões para orientações. The main purpose of this thesis is the development of a new family of digital filters used for data classification, particularly applied to the pre-diagnosis of pathologies in the larynx. A brief bibliographical review, that concentrates on the functioning of the human vocal tract, on the process of disease diagnosis, and on the discrete wavelet transform, which formed the basis for the construction of the proposed filters, is presented. The technology used to develop these new families of filters, that is based on the Daubechies' Wavelet Transform, is also described, moreover, a comparison with other techniques described in the specialized literature for the same purpose is also presented. The investigation shows the results obtained with the proposed technique, in which the accuracy of 100% in normal voice classifications and of 95,52% in pathological voice classifications, was obtained.