In this paper, we propose an algorithm based on the mathematical p-norm which has been applied to improve both the traction power and the trajectory smoothness of joystick-controlled two-wheeled vehicles. This algorithm can theoretically supply 100% of available power to each of the actuators if the infinity-norm is used, i.e., when the p-norm tends to infinity. Furthermore, a geometrical model using the radius of curvature has been developed to track the effect of the proposed algorithm on the vehicle’s trajectory. Findings in this research work contribute to the kinematic control and path planning algorithms for vehicles actuated by two wheels, such as tanks and electric wheelchairs, both of vital importance for the security and heath industry. Computer simulations and experiments with a real robot are performed to verify the results.