Serial focussed ion beam scanning electron microscopy (FIB/SEM) enables imaging and assessment of sub-cellular structures on the mesoscale (10 nm to 10 μm). When applied to vitrified samples, serial FIB/SEM is also a means to target specific structures in cells and tissues while maintaining constituents' hydration shells for in-situ structural biology downstream. However, the application of serial FIB/SEM imaging of non-stained cryogenic biological samples is limited due to low contrast, curtaining and charging artefacts. We address these challenges using a cryogenic plasma FIB/SEM (cryo-pFIB/SEM). We evaluated the choice of plasma ion source and imaging regimes to produce high quality SEM images of a range of different biological samples. Using an automated workflow we produced three dimensional volumes of bacteria, human cells, and tissue, and calculated estimates for their resolution, typically achieving 20 to 50 nm. Additionally, a tag-free tool is needed to drive the application of in situ structural biology towards tissue. The combination of serial FIB/SEM with plasma-based ion sources promises a framework for targeting specific features in bulk-frozen samples (>100 μm) to produce lamella for cryogenic electron tomography.