The field of process mining focuses on distilling knowledge of the (historical) execution of a process based on the operational event data generated and stored during its execution. Most existing process mining techniques assume that the event data describe activity executions as degenerate time intervals, i.e., intervals of the form [t, t], yielding a strict total order on the observed activity instances. However, for various practical use cases, e.g., the logging of activity executions with a nonzero duration and uncertainty on the correctness of the recorded timestamps of the activity executions, assuming a partial order on the observed activity instances is more appropriate. Using partial orders to represent process executions, i.e., based on recorded event data, allows for new classes of process mining algorithms, i.e., aware of parallelism and robust to uncertainty. Yet, interestingly, only a limited number of studies consider using intermediate data abstractions that explicitly assume a partial order over a collection of observed activity instances. Considering recent developments in process mining, e.g., the prevalence of high-quality event data and techniques for event data abstraction, the need for algorithms designed to handle partially ordered event data is expected to grow in the upcoming years. Therefore, this paper presents a survey of process mining techniques that explicitly use partial orders to represent recorded process behavior. We performed a keyword search, followed by a snowball sampling strategy, yielding 68 relevant articles in the field. We observe a recent uptake in works covering partial-order-based process mining, e.g., due to the current trend of process mining based on uncertain event data. Furthermore, we outline promising novel research directions for the use of partial orders in the context of process mining algorithms.