Structural health monitoring with optical fibers provides practical sensing capabilities in many applications including in aeronautics and mechanical structures. A variety of optical fiber sensors have been used including Bragg gratings, intensity or amplitude sensors, and Fabry-Perot ones. Civil structures pose further challenges in monitoring mainly due to their large dimensions, diversity as well as heterogeneity of materials involved, and hostile construction environment. Monitoring of strains, deformations, and deflections provides clues essential for evaluation of design parameters and behavior under service loads. Long gage distributed or multiplexed sensors are excellent candidates for such applications. On the other hand, detection of structural damage and anomalies such as cracking in concrete, splintering of fibers in composites, and fracturing of welds and connections are best accomplished by acoustic sensors. This paper describes principles involved in serial multiplexing of two kinds of optical fibers, namely long gage and acoustic sensors. Both sensor types offer promise in structural health monitoring of large civil structural systems. Representative examples are introduced and described in detail.