The biomedical imaging shows promising results in many applications such as protein characterization and cancer detection using non-ionizing radiation. Skin cancer is one of the most common types of cancer because it is exposed by sun rays during the day. Many techniques have been offered to detect the tumor in the early stage such as ultrasonic and MW imaging. However, most of these studies showed a large printing area with lower BW so as the low resolution. To overcome these drawbacks, a new low profile UWB elliptical patch antenna with high performance is designed on PTFE as a substrate. Then a layer of Indium Tin Oxide (ITO) applies to improve the antenna radiation characteristics. The proposed antenna has a broad BW from 3.9 GHz to 30 GHz along with a resonance at 2.4 GHz. Furthermore, the antenna presents a maximum gain of 7.3 dB, maximum directivity of 7.78 dBi, the maximum radiation efficiency of 92 %, and consistent, stable radiation pattern throughout the frequency band. Besides, the time-domain characteristics show that the antenna can be a suitable candidate for microwave imaging of skin cancer.