This work describes the removal of three pharmaceuticals, namely ceftriaxone sodium (CFX), diclofenac sodium (DCF) and atenolol (ATN) from water using magnetic poly (styrene-2-acrylamido-2-methyl propanesulfonic acid) (St-AMPS) adsorbent. This adsorbent was characterized by several techniques such as FTIR, TEM, TGA, VSM and DLS. Three kinetic models, pseudo-first-order, pseudo-secondorder and intra-particle diffusion models were used to study the adsorption kinetics.The results showed that the adsorption kinetics of pharmaceuticals onto magnetic poly (St-AMPS) adsorbent followed the pseudo-second-order model and were relatively rapid. In addition, it was found that the intra-particle diffusion was not the sole rate-controlling step and the adsorption of pharmaceuticals onto adsorbent occurred via two steps adsorption process. The experimental data were fitted with three isotherm models including Freundlich, Langmuir and Dubinin-Radushkevich (D-R). It was found that the adsorption of pharmaceuticals onto magnetic poly (St-AMPS) nanoparticles was the best described by the Langmuir model. Maximum adsorption capacities of 150.602, 47.824 and 119.904 mg/g were obtained for DCF, ATN and CFX, respectively. Also the obtained free energy from D-R isotherm (6.19, 4.93 and 6.45 kJ/mol for DCF, ATN and CFX respectively) indicated that the adsorption process was a physiosorption. Magnetic poly (St-AMPS) adsorbent could be recycled for removal of CFX, DCF and ATN by alkaline aqueous solution (pH 8). Therefore, this adsorbent can act as a promising adsorbent for water treatment processes.
K E Y W O R D Sadsorption, magnetic separation, pharmaceutical, poly (styrene-2-acrylamido-2-methyl propanesulfonic acid), regeneration