2021
DOI: 10.32839/2304-5809/2021-5-93-34
|View full text |Cite
|
Sign up to set email alerts
|

Кубатурна Формула На Октаедрі

Abstract: При розв’язанні граничних задач математичної фізики методом скінченних елементів у тривимірній області з використанням решіток тетраедрально-октаедральної структури існує необхідність отримання формул чисельного інтегрування по області октаедра. У даній роботі побудовано кубатурну формулу на октаедрі, яка є точною для алгебраїчних тривимірних поліномів третього, п’ятого та сьомого степенів. При цьому точність отриманої формули визначається вибором відповідних груп вузлів інтерполяції, які розташовані на осях с… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 3 publications
0
2
0
Order By: Relevance
“…To find elements of the local stiffness matrix of an octahedron with quadratic functions, the procedures for integrating by analytical methods that are built into the Maple processor were applied. Formulas of numerical integration for FE in the form of an octahedron to the seventh algebraic order of accuracy were constructed in work [10]. These formulas reduce the time complexity of the FEM algorithm when using cells in the form of an octahedron but cannot be applied to FE of irregular geometric shape.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
See 1 more Smart Citation
“…To find elements of the local stiffness matrix of an octahedron with quadratic functions, the procedures for integrating by analytical methods that are built into the Maple processor were applied. Formulas of numerical integration for FE in the form of an octahedron to the seventh algebraic order of accuracy were constructed in work [10]. These formulas reduce the time complexity of the FEM algorithm when using cells in the form of an octahedron but cannot be applied to FE of irregular geometric shape.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…Within a given interval, the resulting formulas have six interpolation nodes, which can be determined from (6) or (9). In addition, note that at p = 1, the systems of equations ( 5) and ( 8) have a common solution, which, when substituting into formula (7), is a cubature formula for the octahedron [10], which is accurate for the third-power algebraic polynomials.…”
Section: Determining the Conditions For Using Constructed Cubature Formulas In The Algorithmization Of Femmentioning
confidence: 99%