Обобщение теоремы Бертрана на поверхности вращения В работе доказано обобщение теоремы Бертрана на случай абстракт-ных поверхностей вращения, не имеющих "экваторов". Доказан критерий существования на такой поверхности ровно двух центральных потенциа-лов (с точностью до аддитивной и мультипликативной констант), для ко-торых все ограниченные орбиты замкнуты и имеется ограниченная неосо-бая некруговая орбита. Доказан критерий существования ровно одного такого потенциала. Изучены геометрия и классификация соответствую-щих поверхностей, с указанием пары (гравитационного и осцилляторного) потенциалов или единственного (осцилляторного) потенциала. Показано, что на поверхностях, не относящихся ни к одному из описанных классов, потенциалов искомого вида не существует.Ключевые слова: теорема Бертрана, обратная задача динамики, по-верхность вращения, движение в центральном поле, замкнутые орбиты
D. A. Fedoseev, E. A. Kudryavtseva, O. A. Zagryadsky
Generalization of Bertrand's theorem to surfaces of revolutionThe generalization of Bertrand's theorem to abstract surfaces of revolution without "equators" is proved. We prove a criterion for the existence on such a surface of exactly two central potentials (up to an additive and a multiplicative constants) all of whose bounded nonsingular orbits are closed and which admit a bounded nonsingular noncircular orbit. A criterion for the existence of a unique such potential is proved. The geometry and classification of the corresponding surfaces are described, with indicating either the pair of (gravitational and oscillator) potentials or the unique (oscillator) potential. The absence of the required potentials on any surface which does not meet the above criteria is proved.