В работе выделен некоторый класс анизотропных эллиптических уравнений второго порядка дивергентного вида с младшими членами с нестепенными нелинейностями $$\sum\limits_{\alpha=1}^{n}(a_{\alpha}({\boldsymbol x},u,\nabla u))_{x_{\alpha}}-a_0({\boldsymbol x},u,\nabla u)=0.$$ На каратеодориевы функции, входящие в уравнение, накладывается условие совокупной монотонности. Ограничения на рост функций формулируются в терминах специального класса выпуклых функций. Эти требования обеспечивают ограниченность, коэрцитивность, монотонность и семинепрерывность соответствующего эллиптического оператора. Для рассматриваемых уравнений с нестепенными нелинейностями исследованы качественные свойства решений задачи Дирихле в неограниченных областях $\Omega\subset \mathbb{R}_n,\;n\geq 2$. Установлены существование и единственность обобщeнных решений в анизотропных пространствах Соболева-Орлича. Кроме того, для произвольных неограниченных областей обобщены теоремы вложения анизотропных пространств Соболева-Орлича. Это позволило доказать глобальную ограниченность решений задачи Дирихле. Использована оригинальная геометрическая характеристика для неограниченных областей, расположенных вдоль выделенной оси. В терминах этой характеристики установлена экспоненциальная оценка скорости убывания на бесконечности решений рассматриваемой задачи с финитными данными.