Изучается геометрия метрического пространства компактных подмножеств $\mathbb R^n$, рассматриваемых с точностью до движения, сохраняющего ориентацию. Показано, что в оптимальном положении пары компактов (расстояние по Хаусдорфу между ними нельзя уменьшить), один из которых одноточечный, последний находится в чебышeвском центре первого. Для ориентированно подобных компактов вычислено евклидово расстояние Громова-Хаусдорфа между ними и доказано, что в оптимальном положении чебышeвские центры этих компактов совпадают. Показано, что любое трехточечное метрическое пространство изометрично вкладывается в изучаемое пространство компактов. Доказано, что для пары оптимально расположенных компактов все компакты, промежуточные в смысле метрики Хаусдорфа, также являются промежуточными и в смысле евклидовой метрики Громова-Хаусдорфа. Для произвольной $n$-точечной границы, образованной компактами множества $\mathscr X$, являющимися окрестностями отрезков, точка Штейнера реализует минимальное заполнение и также принадлежит множеству $\mathscr X$.
Библиография: 14 названий.