The commonly used formula H = DCF + DR, where DCF and DR are the effects of the magnetopause and ring current, respectively, neglects contribution of the cross‐tail current to the Dst variation. The formula allows us to explain satisfactorily the observed relation of the Dst variation to the ring current intensity but faces difficulties in explaining other experimental facts. First, the equatorward shift of the auroral oval cannot be caused by the sole enhancement of the ring current. Second, the observed relation of the Dst growth rate to the southward IMF component [Burton et al., 1975] does not have any quantitative explanation up to now. We suggest using a different formula, H = (2μ0psw)1/2 + DR‐Fout/2S. The formula is obtained from the conditions of magnetic flux conservation and pressure balance. The flux Fout is directed mainly to the nightside of the magnetosphere. Hence the term Fout/2S describes the effect of the crosstail current and a part of the magnetopause currents. During quiet periods, each term in the right‐hand side of our formula is of the order of tens of nanoteslas. During storm time, each term can rise to hundreds of nanoteslas. The flux Fout grows after the interplanetary magnetic field (IMF) becomes southward owing to the flux transport from the dayside to the magnetotail. The growth rate is described by the formula dFout/dt = U − Fout/τF + ηF, where U is the electric potential difference between the dawnside and duskside of the magnetosphere and τF and ηF are constant. The voltage U depends linearly on the IMF southward component. Combining the latter formula with the expression for H yields a relationship between the Dst growth rate and the IMF southward component close to the observed one. Since the auroral oval is mapped predominantly to the plasma sheet of the magnetotail, the growth of Fout during a storm allows us to explain the equatorward shift of the auroral oval. Another prediction from our theory is the erosion of the stable trapping region in which the equatorial cross section S is related to the flux Fout by the equation S1/2[S(2μ0psw)1/2 + Fout] = 3π3/2(ME + MRC), where ME and MRC are the magnetic moments of the Earth and ring current, respectively. Growth of Fout leads to the decrease of S and to the earthward movement of the dayside magnetopause. During storms this effect can be stronger than that of the region 1 Birkeland current, also moving the magnetopause earthward.
We have obtained the injection function for the part of the storm‐time depression which is related to the cross‐tail current and corresponding currents on the magnetopause. This injection function is QTC=−κU/S, where U is the electric potential difference between the dawn and dusk sides of the magnetosphere, S is the equatorial cross‐section of the stable trapping region, and κ is a coefficient varying from 0.5 to 1.5 depending on the state of the magnetosphere and solar wind pressure. The injection function QTC appeared to be close to the observed one for the Dst‐variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.