Physically unclonable functions (PUFs) are used as low-cost cryptographic primitives in device authentication and secret key creation. SRAM-PUFs are well-known as entropy sources; nevertheless, due of non-deterministic noise environment during the power-up process, they are subject to low challenge-response repeatability. The dependability of SRAM-PUFs is usually accomplished by combining complex error correcting codes (ECCs) with fuzzy extractor structures resulting in an increase in power consumption, area, cost, and design complexity. In this study, we established effective metrics on the basis of the separatrix concept and cell mismatch to estimate the percentage of cells that, due to the effect of variability, will tend to the same initial state during power-up. The effects of noise and temperature in cell start-up processes were used to validate the proposed metrics. The presented metrics may be applied at the SRAM-PUF design phases to investigate the impact of different design parameters on the percentage of reliable cells for PUF applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.