Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific.
Equations to describe gas production profiles, obtained using manual or automated systems for in vitro fermentation of ruminant feeds, were derived from first principles by considering a simple three-pool scheme. The pools represented were the potentially degradable and undegradable feed fractions, and accumulated gases. The equations derived and investigated mathematically were the generalized Mitscherlich, generalized Michaelis-Menten, Gompertz, and logistic. They were obtained by allowing the fractional rate of degradation to vary with time. The equations permit the extent of ruminal degradation (hence the supply of microbial protein to the duodenum) to be evaluated, thus linking the gas production technique to animal production. Rumen: Gas production: Mathematical models
Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH 3 ), nitrous oxide (N 2 O) and di-nitrogen (N 2 ) to air, nitrate (NO 3 2 ) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N 2 O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH 4 1 ), and thereafter into NO 3 2 and ultimately in N 2 accompanied with the release of N 2 O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N 2 O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of urine deposition or manure application strongly influence N 2 O release. Major dietary strategies to mitigating N 2 O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume. For further reduction of N 2 O emission, an integrated animal nutrition and excreta management approach is required.Keywords: nitrogen, urine, cattle, nitrous oxide, mitigation ImplicationsCattle contribute to global warming through emission of nitrous oxide (N 2 O) from urine and faeces. Urinary nitrogen (N) is much more susceptible to gaseous losses than faecal N. To reduce urinary N excretion and N 2 O emission and improve N efficiency of cattle, dietary levels of N should be decreased and an optimal balance between N and energy substrates in the diet should be aimed at. Increasing urine volume by increased dietary mineral contents appears a promising N 2 O mitigation strategy, particularly in pasture. Further reduction of effective mitigation strategies...
SU MMARYMethane, in addition to being a significant source of energy loss to the animal that can range from 0 . 02 to 0 . 12 of gross energy intake, is one of the major greenhouse gases being targeted for reduction by the Kyoto protocol. Thus, one of the focuses of recent research in animal science has been to develop or improve existing methane prediction models in order to increase overall understanding of the system and to evaluate mitigation strategies for methane reduction. Several dynamic mechanistic models of rumen function have been developed which contain hydrogen gas balance sub-models from which methane production can be predicted. These models predict methane production with varying levels of success and in many cases could benefit from further development. Central to methane prediction is accurate volatile fatty acid prediction, representation of the competition for substrate usage within the rumen, as well as descriptions of protozoal dynamics and pH. Most methane models could also largely benefit from an expanded description of lipid metabolism and hindgut fermentation. The purpose of the current review is to identify key aspects of rumen microbiology that could be incorporated into, or have improved representation within, a model of ruminant digestion and environmental emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.