Background
Brachypodium distachyon is emerging as the model plant for temperate grass research and the genome of the community line Bd21 has been sequenced. Additionally, techniques have been developed for Agrobacterium-mediated transformation for the generation of T-DNA insertional lines. Recently, it was reported that expression of the polyubiquitin genes, Ubi4 and Ubi10 are stable in different tissues and growth hormone-treated plant samples, leading to the conclusion that both Ubi4 and Ubi10 are good reference genes for normalization of gene expression data using real-time, quantitative PCR (qPCR).Principal FindingsMining of the Joint Genome Institute (JGI) 8X Brachypodium distachyon genome assembly showed that Ubi4 and Ubi10 share a high level of sequence identity (89%), and in silico analyses of the sequences of Ubi4 (Bradi3g04730) and Ubi10 (Bradi1g32860) showed that the primers used previously exhibit multiple binding sites within the coding sequences arising from the presence of tandem repeats of the coding regions. This can potentially result in over-estimation of steady-state levels of Ubi4 and Ubi10. Additionally, due to the high level of sequence identity between both genes, primers used previously for amplification of Ubi4 can bind to Ubi10 and vice versa, resulting in the formation of non-specific amplification products.ConclusionsThe results from this study indicate that the primers used previously were not sufficiently robust and specific. Additionally, their use would result in over-estimation of the steady-state expression levels of Ubi4. Our results question the validity of using the previously proposed primer sets for qPCR amplification of Ubi4 and Ubi10. We demonstrate that primers designed to target the 3′-UTRs of Ubi4 and Ubi10 are better suited for real-time normalization of steady-state expression levels in Brachypodium distachyon.
HighlightTranscriptomic analysis of the responses of Physcomitrella patens gametophytes to differential CO2 to O2 concentrations reveals extensive transcriptional reprogramming, photosynthetic acclimation, and altered oxidative signalling and defence responses.
Brachypodium distachyon has emerged as the model species for important temperate grass crops such as wheat and barley and the genome of the B. distachyon community inbred line Bd21 has been sequenced. Methods for tissue culture and Agrobacterium-mediated transformation have been developed for this model grass as a resource for reverse genetics and functional genomic analyses. In order to obtain a high quantity and quality of compact embryogenic callus (CEC) in B. distachyon, it is important to examine and optimize the optimal concentration of the auxin 2,4-D (dichlorophenoxyacetic acid) to use in both callus induction and callus proliferation media. Here, we investigated the effects of different concentrations of 2,4-D on callus induction and callus proliferation of B. distachyon Bd21. Our results showed that 2.5 mg l-1 2,4-D is an optimal concentration to use for both callus induction and proliferation, although 5.0 mg l-1 may also be used for callus proliferation. Additionally, the suitability of hygromycin or bialaphos as selectable markers was examined and results indicated that hygromycin is significantly more efficient than bialaphos when using the Agrobacterium-mediated transformation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.