Abstract. A new set of special functions, which has a wide range of applications from number theory to integrability of nonlinear dynamical systems, is described. We study multiple orthogonal polynomials with respect to p > 1 weights satisfying Pearson's equation. In particular, we give a classification of multiple orthogonal polynomials with respect to classical weights, which is based on properties of the corresponding Rodrigues operators. We show that the multiple orthogonal polynomials in our classification satisfy a linear differential equation of order p + 1. We also obtain explicit formulas and recurrence relations for these polynomials.
In this paper we study sequences of vector orthogonal polynomials. The vector orthogonality presented here provides a reinterpretation of what is known in the literature as matrix orthogonality. These systems of orthogonal polynomials satisfy three-term recurrence relations with matrix coefficients that do not obey to any type of symmetry. In this sense the vectorial reinterpretation allows us to study a non-symmetric case of the matrix orthogonality. We also prove that our systems of polynomials are indeed orthonormal with respect to a complex measure of orthogonality. Approximation problems of Hermite-Padé type are also discussed. Finally, a Markov's type theorem is presented.
Multiple orthogonal polynomials with respect to two weights on the step-line are considered. A connection between different dual spectral matrices, one banded (recursion matrix) and one Hessenberg, respectively, and the Gauss–Borel factorization of the moment matrix is given. It is shown a hidden freedom exhibited by the spectral system related to the multiple orthogonal polynomials. Pearson equations are discussed, a Laguerre–Freud matrix is considered, and differential equations for type I and II multiple orthogonal polynomials, as well as for the corresponding linear forms are given. The Jacobi–Piñeiro multiple orthogonal polynomials of type I and type II are used as an illustrating case and the corresponding differential relations are presented. A permuting Christoffel transformation is discussed, finding the connection between the different families of multiple orthogonal polynomials. The Jacobi–Piñeiro case provides a convenient illustration of these symmetries, giving linear relations between different polynomials with shifted and permuted parameters. We also present the general theory for the perturbation of each weight by a different polynomial or rational function aka called Christoffel and Geronimus transformations. The connections formulas between the type II multiple orthogonal polynomials, the type I linear forms, as well as the vector Stieltjes–Markov vector functions is also presented. We illustrate these findings by analyzing the special case of modification by an even polynomial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.