The purpose of this study is to describe a method for developing fusion imaging for the preoperative evaluation of cholesteatoma. In 33 patients diagnosed with cholesteatoma, a high-resolution temporal bone computed tomography (CT) scan without intravenous contrast and propeller diffusion-weighted magnetic resonance imaging (MRI) were performed. Both studies were then sent to the BrainLAB work station, where the images were fused to obtain a morphological and color map. Intraoperative findings coincided with fusion CT-MRI imaging in all but two patients. In addition, one false positive and one false negative case were observed. CT and diffusion-weighted MRI are complementary techniques that should be employed to assess a cholesteatoma prior to surgery in many cases. Hence, to combine the advantages of each technique, we developed a fusion image technique similar to those that are routinely employed for radiotherapy planning and positron emission tomography-CT imaging. Fusion images can prove useful in selected cases.
The introduction of transcranial magnetic stimulation has allowed the study of conduction in the proximal portions and central pathways of the cranial nerves. A study is made of cranial nerve XII with transcranial magnetic stimulation at two levels, cortical and cisternal, registering the motor evoked potential by means of surface electrodes in contact with the upper face of the tongue. Motor evoked potentials were constantly observed on cortical stimulation, in a painless, easy, and reproducible way, with mean values of 10.84 +/- 1.14 milliseconds (latency) and 7.81 +/- 1.14 mV (amplitude). Motor evoked potentials were unconstant and showed reduced amplitudes on cisternal stimulation, with mean values of 4.72 +/- 0.62 milliseconds and 0.83 +/- 1.26 mV. The magnetic stimulation technique allows the study of the entire motor pathway of cranial nerve XII (motor cortex-medulla, motoneuron-muscle). The method is efficient, noninvasive, painless, and easily reproduced, and it comes close to being an ideal clinical conduction study technique for this cranial nerve.
The effects of chronic exposure to high sound pressure levels (SPLs) are widely studied in the industry environment. However, the way that SPLs affect music students has not been thoroughly examined. In this paper, we study the SPL exposure of batucada students and we propose an assisted protection headphone as a part of e-health system. We measured the SPL reached during a regular percussion class. Pure-tone audiometries were performed to a set of percussion students. The gathered data were statistically analyzed. The assisted protection headphones and their operation are detailed and tested during a regular class. Our results show that 35% of the musicians present with a noise-induced hearing loss, considered as two frequencies with hearing loss of 25 dB or more or one frequency with a hearing loss of 30 dB or more. Our data also shows that those students that do not use any protection have a greater hearing loss. However, the students that use protection headphones are also suffering hearing loss. There might be a problem in the way that musicians are using the protection headphones. Our assisted protection headphones as a part of e-health measures can diminish the negative effects of percussion instruments for musicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.