Apple is among the most consumed fruits worldwide. It is available on the market for the whole year being a major source of dietary polyphenols. Several studies suggested that apple polyphenols could play a role in prevention of degenarative diseases. The action of these compounds has been partially ascribed to their antioxidative ability, and fruit antioxidants profile is influenced by apple variety and by the postharvest storage. In this work, the polyphenols composition of the flesh of four apple varieties cultivated in southern Italy were investigated by HPLC, and a flow injection MS/MS procedure to quantify cholorogenic acid and catechins was set up. Phenolic composition and the radical scavenging activity were monitored during a postharvest storage of four months. The quantification by flow injection procedure gives results comparable to those obtained by HPLC, and the increase of the antioxidant activity during storage correlated with an increase of the concentration of catechin and phloridzin. This trend is particularly evident for the variety "Annurca" which is a typical product cultivated in the area around Naples. The genetic characteristics of the Annurca variety together with the anticipated harvest time and the peculiar postharvest conditions are likely responsible for this increase of the antioxidant activity.
We have demonstrated that wheatwin1, a wheat pathogenesis-related protein of class 4 (PR4), has ribonuclease activity. Both native and recombinant proteins hydrolyse RNA from wheat coleoptils and have antifungal activity. Sepharosebound wheatwin1 is able to interact with either wheat or Fusarium culmorum RNA. 3D modelling studies showed that, like ribonucleases A and T1, the action mechanism should involve two His residues, an Arg residue and an Asp residue.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder causing movement disabilities and several non-motor symptoms in afflicted patients. Recent studies in animal models of PD and analyses of brain specimen from PD patients revealed an increase in the level and activity of the non-receptor tyrosine kinase Abelson (c-Abl) in dopaminergic neurons with phosphorylation of protein substrates, such as α-synuclein and the E3 ubiquitin ligase, Parkin. Most significantly inhibition of c-Abl kinase activity by small molecular compounds used in the clinic to treat human leukemia have shown promising neuroprotective effects in cell and animal models of PD. This has raised hope that similar beneficial outcome may also be observed in the treatment of PD patients by using c-Abl inhibitors. Here we highlight the background for the current optimism, reviewing c-Abl and its relationship to pathophysiological pathways prevailing in PD, as well as discussing issues related to the pharmacology and safety of current c-Abl inhibitors. Clearly more rigorously controlled and well-designed trials are needed before the c-Abl inhibitors can be used in the neuroclinic to possibly benefit an increasing number of PD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.