NK cells lyse virus-infected cells by degranulation; however, alterations in NK cell degranulation in persistent viral infections have not been directly studied. Earlier reports have documented a decrease in NK activity in patients with frequently recurring herpes (FRH). We corroborate these findings by showing that the degranulation responses of blood NK cells from patients with FRH, both during relapse and during remission, are significantly lower than those in healthy donors. The impaired degranulation was probably not caused by defective target cell recognition, since it was observed upon stimulation both with K562 cells and with a receptor-independent stimulus (phorbol 12-myristate 13-acetate plus ionomycin). We also show that the intracellular expression of perforin and CD107a by NK cells from patients with FRH is not different from that in healthy donors, thus excluding that the low NK cell degranulation in FRH is caused by a smaller size of the lytic granule compartment. We confirm previous reports on lowered NK activity in FRH patients and show that NK activity is significantly impaired only during remission, but not relapse; the causes for the discrepancy between the low degranulation and "normal" NK cell activity during relapse are discussed. In all, these data point at the deficit of NK cell degranulation in FRH. Whether this is a predisposing factor or a consequence of herpes simplex virus infection requires further investigation.
Национальный исследовательский центр эпидемиологии и микробиологии им. Н.Ф.Гамалеи, Москва; 2 Государственный научный центр Институт иммунологии, Москва; 3 Московский научно-практический центр дерматовенерологии и косметологии; 4 Московский НИИ эпидемиологии и микробиологии им. Г.Н. Габричевского
The capillary system immediately responds to many pathologies and environmental conditions. Accurate monitoring of its functioning often enables early detection of various diseases related to disorders in skin microcirculation. To expand the scope of capillaroscopy application, it is reasonable to visualize and assess blood microcirculation exactly in the areas of inflamed skin. Body vibrations, breathing, non-flat skin surface and other factors hamper the application of conventional capillaroscopes outside the nailfold area. In this paper, we propose an exoscope-based optical system for high-quality non-invasive computational imaging of capillary network in various areas of the body. Accurate image matching and tracking temporal intensity variations allow detecting the presence of blood pulsations, precise mapping of capillaries and photoplethysmogram acquisition. We have demonstrated the efficiency of the proposed approach experimentally by in vivo mapping and analysis of microvessels in wrist, forearm, upper-arm, breast and hip areas. We believe that the developed system will increase the diagnostic value of video capillaroscopy in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.