The diagnostic reliability of skin biopsy in small fiber neuropathy depends on the availability of normative reference values. We performed a multicenter study to assess the normative values of intraepidermal nerve fiber (IENF) density at distal leg stratified by age deciles. Eight skin biopsy laboratories from Europe, USA, and Asia submitted eligible data. Inclusion criteria of raw data were healthy subjects 18 years or older; known age and gender; 3-mm skin biopsy performed 10-cm above the lateral malleolus; bright-field immunohistochemistry protocol, and quantification of linear IENF density in three 50-µm sections according to published guidelines. Data on height and weight were recorded, and body mass index (BMI) was calculated in subjects with both available data. Normative IENF density reference values were calculated through quantile regression analysis; influence of height, weight, or BMI was determined by regression analyses. IENF densities from 550 participants (285 women, 265 men) were pooled. We found a significant age-dependent decrease of IENF density in both genders (women p < 0.001; men p = 0.002). Height, weight, or BMI did not influence the calculated 5th percentile IENF normative densities in both genders. Our study provides IENF density normative reference values at the distal leg to be used in clinical practice.
Early neuropathy is often sensory predominant and prominently involves small-diameter nerve fibers. Established neuropathy examination scales such as the Michigan Diabetic Neuropathy Scale (MDNS) and the Neuropathy Impairment Score-Lower Leg (NIS-LL) focus primarily on large-fiber sensory and motor function. Here, we validate the Utah Early Neuropathy Scale (UENS), a physical examination scale specific to early sensory predominant polyneuropathy. Compared with other scales, the UENS emphasizes severity and spatial distribution of pin (sharp) sensation loss in the foot and leg and focuses less on motor weakness. UENS, MDNS, and NIS-LL were compared in 215 diabetic or prediabetic subjects, with (129) or without neuropathy (86), and repeated in 114 neuropathy subjects after 1 year of follow-up. Neuropathy severity was also evaluated with nerve conduction studies, quantitative sensory testing, quantitative sudomotor axonal reflex testing, and intraepidermal nerve fiber density determination. The UENS had a high degree of interrater reliability (interclass correlation of 94%). UENS correlated significantly to MDNS and NIS-LL (p < 0.01), and more significantly than MDNS or NIS-LL to confirmatory tests. In this cohort, UENS had a superior profile to receiver operating characteristic analysis across a range of scores, with a sensitivity (92%) higher than MDNS (67%) or NIS-LL (81%), without sacrificing specificity. UENS more closely correlated with change in ancillary and small-fiber neuropathy measures over 1 year follow-up than did MDNS or NIS-LL. UENS is a sensitive and reproducible clinical measure of sensory and small-fiber nerve injury and may be useful in trials of early neuropathy.
Diabetes has become one of the largest global health-care problems of the 21 st century. According to the Centers for Disease Control and Prevention, the population prevalence of diabetes in the US is approaching 10% and is increasing by 5% each year. Diabetic neuropathy is the most common complication associated with diabetes mellitus. Diabetes causes a broad spectrum of neuropathic complications, including acute and chronic forms affecting each level of the peripheral nerve, from the root to the distal axon. This review will focus on the most common form, distal symmetric diabetic polyneuropathy. There has been an evolution in our understanding of the pathophysiology and the management of diabetic polyneuropathy over the past decade. We highlight these new perspectives and provide updates from the past decade of research.
We examined records of 121 patients coded as idiopathic polyneuropathy, extracting neuropathy symptoms, electromyographic data, and diagnostic blood work. Of 89 patients screened for glucose handling, 28 demonstrated frank diabetes mellitus. Of the remaining 61 patients, 15 (25%) had impaired glucose tolerance (IGT) by American Diabetes Association criteria (serum glucose 140--200 mg/dl 2 h after a 75-g glucose load). Excluding those with diabetes mellitus, 35% of patients with neuropathic pain had IGT, more than twice the prevalence found in large, unselected population studies. No other common etiology of polyneuropathy was identified. Two-hour oral glucose tolerance test results were often abnormal, whereas fasting glucose or hemoglobin A1c was normal. Bias due to referral pattern, body weight, or genetics might affect the comparison of our polyneuropathy cohort with a broader, population-based control. However, our results corroborate an association between IGT and painful sensory polyneuropathy and link these patients syndromically to the typical painful polyneuropathy of diabetes mellitus.
Recently, there has been an increase in invasive pneumococcal disease (IPD) caused by serotype 1 Streptococcus pneumoniae throughout Europe. Serotype 1 IPD is associated with bacteremia and pneumonia in Europe and North America, especially in neonates, and is ranked among the top five most prevalent pneumococcal serotypes in at least 10 countries. The currently licensed pediatric pneumococcal vaccine does not afford protection to this serotype. Upon screening of 252 clinical isolates of S. pneumoniae, we discovered mutations in the pneumolysin gene of two out of the four serotype 1 strains present in the study group. Analysis of an additional 28 serotype 1 isolates from patients with IPD from various Scottish Health Boards, revealed that >50% had mutations in their pneumolysin genes. This resulted in the expression of nonhemolytic forms of pneumolysin. All of the strains producing nonhemolytic pneumolysin were sequence type 306 (ST306), whereas those producing "wild-type" pneumolysin were ST227. The mutations were in a region of pneumolysin involved in pore formation. These mutations can be made in vitro to give the nonhemolytic phenotype. Pneumolysin is generally conserved throughout all serotypes of S. pneumoniae and is essential for full invasive disease; however, it appears that serotype 1 ST306 does not require hemolytically active pneumolysin to cause IPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.