We present the fifth release of the UMIST Database for Astrochemistry (UDfA). The new reaction network contains 6173 gas-phase reactions, involving 467 species, 47 of which are new to this release. We have updated rate coefficients across all reaction types. We have included 1171 new anion reactions and updated and reviewed all photorates. In addition to the usual reaction network, we also now include, for download, state-specific deuterated rate coefficients, deuterium exchange reactions and a list of surface binding energies for many neutral species. Where possible, we have referenced the original source of all new and existing data. We have tested the main reaction network using a dark cloud model and a carbon-rich circumstellar envelope model. We present and briefly discuss the results of these models.
Abstract. We report a new version of the UMIST database for astrochemistry. The previous (1995) version has been updated and its format has been revised. The database contains the rate coefficients, temperature ranges and -where available -the temperature dependence of 4113 gas-phase reactions important in astrophysical environments. The data involve 396 species and 12 elements. We have also tabulated permanent electric dipole moments of the neutral species and heats of formation. A new table lists the photo process cross sections (ionisation, dissociation, fragmentation) for a few species for which these quantities have been measured. Data for Deuterium fractionation are given in a separate table. Finally, a new online Java applet for data extraction has been created and its use is explained in detail. The detailed new datafiles and associated software are available on the World Wide Web at http://www.rate99.co.uk.
Abstract. The distributions of molecules in the inner regions of a protostellar disk are presented. These were calculated using an uncoupled chemical/dynamical model, with a numerical integration of the vertical disk structure. A comparison between models with and without the effects of X-ray ionisation is made, and molecules are identified which are good tracers of the ionisation level in this part of the disk, notably CN and C2H. In the region considered in this paper (r ≤ 10 AU), the chemistry is dominated by the thermal desorption of species from grains. This shows that a critically important detail in this region of the disk, as far as molecular distributions are concerned, is the temperature profile. We find that not all of the gaseous material is frozen onto grain surfaces at 10 AU, and we identify species, including some organic molecules, which should exist in observable quantities in the inner regions of protostellar disks.
Abstract. The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C 2 H 2 ), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C 2 H 2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5 µm HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in both the extra-galactic and Galactic carbon stars. One SMC post-AGB star, SMC-S2, shows the 3.3 µm PAH band. This first detection of a PAH band from an SMC post-AGB star confirms PAHs can form in these low-metallicity stars. None of the oxygen-rich LMC stars show SiO bands, except one possible detection in a low quality spectrum. The limits on the equivalent widths of the SiO bands are below the expectation of up to 30 Å for LMC metallicity. Several possible explanations are discussed, mostly based on the effect of pulsation and circumstellar dust. The observations imply that LMC and SMC carbon stars could reach mass-loss rates as high as their Galactic counterparts, because there are more carbon atoms available and more carbonaceous dust can be formed. On the other hand, the lack of SiO suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich stars. The effect on the ISM dust enrichment is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.