Abstract. Assuming the Central Limit Theorem, experimental uncertainties in any data set are expected to follow the Gaussian distribution with zero mean. We propose an elegant method based on Kolmogorov-Smirnov statistic to test the above; and apply it on the measurement of Hubble constant which determines the expansion rate of the Universe. The measurements were made using Hubble Space Telescope. Our analysis shows that the uncertainties in the above measurement are non-Gaussian.
The nature of random errors in any data set is Gaussian is a well established fact according to the Central Limit Theorem. Supernovae type Ia data have played a crucial role in major discoveries in cosmology. Unlike in laboratory experiments, astronomical measurements can not be performed in controlled situations. Thus, errors in astronomical data can be more severe in terms of systematics and non-Gaussianity compared to those of laboratory experiments. In this paper, we use the Kolmogorov-Smirnov statistic to test non-Gaussianity in high-z supernovae data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.