The coffee berry borer (CBB), Hypothenemus hampei (Ferrari), is a multivoltine species closely associated with coffee crops worldwide, causing severe damage to the bean. In Mexico, as in all tropical regions, CBB survives during the inter-harvest period in residual berries on the ground or in dry berries remaining on the branches, and then disperses in search of the first suitable berries. In this study, we investigated how CBB dispersed from the first infested nodes during the fruiting period of Coffea canephora Pierre, which provides a favourable trophic level for this insect. Forty-five branches equally distributed in 15 coffee trees, with one infested node and four uninfested nodes, were selected. The branches were subjected to three treatments over nine weeks: 1) glue between nodes with full protection, 2) glue between nodes without protection, and 3) no glue and no protection. In addition, 45 CBB-free branches were selected and subjected to the same three treatments. CBB colonization can occur in three ways: 1) from an infested node to an uninfested node on the same branch, 2) from infested berries to uninfested berries within the nodes, 3) from branches to other branches. We also found that CBB dispersal between nodes of the same branches never occurred by walking but by flying. Thus, in this context of coffee berry development and ripening, and unlike the phenological situation of the inter-harvest period, CBB continuously travels very short distances, thus limiting its control.
The coffee berry borer, Hypothenemus hampei (Ferrari), can survive in residual coffee berries during the inter-harvest period, while new fructification only appears 2–3 months after the last harvest. The dispersal of colonizing females is an adaptation that enables the life cycle of the species to go ahead whenever his flight aptitude allows. This paper focuses on accurately determining the rate of inseminated females ready to reproduce when emerging from residuals berries to colonize new ones, which constitutes a characteristic of the live cycle far from common in Curculionidae. We dissected females caught in traps baited with a mixture of alcohols during the inter-harvest season, females from infested residual berries collected from branches, and virgin females obtained from pupae reared individually in the laboratory. After microscopic preparation with Giemsa stain, spermathecae were observed to identify the physiological status of each specimen. Out of the females found in the traps, 98.4% displayed recent and abundant insemination and 1.6% sporadic insemination. In contrast, in residual berries, most of females were recently inseminated (84.5%), followed by virgin females (10.5%) and older inseminated females (5%). In addition, the flight tests of the virgin females were negative. These results indicate that all colonizing females were inseminated, ready for flying and oviposition, females inside residual berries showed different physiological status, and virgin females could not migrate since they could not flight. The large number of inseminated females inside the residual berries, and the capacity of migrating females to colonize and reproduce, suggest that it is necessary to control residual berries and use traps to stop the dispersal and reproduction of this pest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.