Antioxidant components in Aloe vera were examined for lipid peroxidation using rat liver microsomal and mitochondrial enzymes. Among the aloesin derivatives examined, isorabaichromone showed a potent antioxidative activity. The DPPH radical and superoxide anion scavenging activities were determined. As one of the most potent components, isorabaichromone together with feruloylaloesin and p-coumaroylaloesin showed potent DPPH radical and superoxide anion scavenging activities. Electron spin resonance (ESR) using the spin trapping method suggested that the potent superoxide anion scavenging activity of isorabaichromone may have been due to its caffeoyl group. As A. vera has long been used to promote wound healing, the inhibitory effects of aloesin derivatives for cyclooxygenase (Cox)-2 and thromboxane (Tx) A 2 synthase were examined and the participation of p-coumaroyl and feruloyl ester groups in the aloesin skeleton was demonstrated. These findings may explain, at least in part, the wound healing effects of A.vera. Abbreviations. ADP:adenosine diphosphate ASA:ascorbic acid BHT:butylated hydroxytoluene BSA:bovine serum albumin DMPO:5,5-dimethyl-1-pyrroline N-oxide DPPH:1,1-diphenyl-2-picrylhydrazyl EDTA:edetic acid HEPES: N-(2-hydroxyethyl)-piperazine- N-2'-ethane-sulfonic acid NADH:reduced nicotinamide adenine dinucleotide NADPH:reduced nicotinamide adenine dinucleotide phosphate NBT:nitroblue tetrazolium Pg:prostaglandin SOD:superoxide dismutase TBA:thiobarbituric acid TCA:trichloroacetic acid XOD:xanthine oxidase
The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These findings are discussed in the light of the potential of A. vera plant extracts for developing efficient, specific and non-toxic anticancer drugs that are affordable for developing countries.
An active glycoprotein fraction containing 58 % protein was isolated from Aloe vera gel by precipitation with 55 % ammonium sulfate followed by gel permeation using DEAE-Sephacel A-25, Sepharose 6B and Sephadex G-50 columns in a yield of 3 x 10 -3 %. The glycoprotein fraction showed a single band corresponding to a subunit of verectin at the same position when stained with both Coomassie brilliant blue and periodic acid-Schiff reagents on 18 % SDS-PAGE. The molecular weight (14 kDa) was confirmed by Sephadex G-50 column chromatography. The glycoprotein fraction showed a radical scavenging activity against superoxide anion generated by the xanthine-xanthine oxidase system as well as inhibition of cyclooxygenase-2 and reduction of thromboxane A 2 synthase level in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.