The characteristic frequencies of electrode polarization and of interfacial polarization effects in dielectric spectra of ionic liquids and of polymer bi-layers are determined and systematically analyzed, based on dielectric measurements by means of broadband dielectric spectroscopy, numerical simulations, and analytical calculations. It is shown that, to a large extent, identical scaling laws can be derived for these two dielectric phenomena taking place at external and internal interfaces. Surprisingly, a fundamentally different behavior concerning the interrelation between the characteristic frequencies is found. This brings direct evidence that different manifestations of the phenomenon of electrical polarization can be discriminated by examining the inter-relation governing their characteristic frequencies, which can be of significant importance in disseminating the nature of different contributions appearing in the dielectric spectra of complex materials. Based on our analysis, we derive a new formula, valid for both electrode polarization and interfacial polarization effects, that allows one to determine the conductivity value from the frequency position of the Maxwell-Wagner-Sillars peak. An excellent agreement between experiment and calculations is obtained. The formula can be used, furthermore, to estimate the thickness of the interfacial layers formed due to electrode polarization effects. Values in the order of several nanometers, increasing with decreasing temperature, are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.