Morphological, nutritional and molecular analyses were carried out to assess genetic diversity among 35 introduced lentil genotypes (Lens culinaris Medik.). The genotypes exhibited significant differences for their field parameters and some of them showed noticeable superiority. The nutritional and proximate analysis showed that some genotypes were excellent sources of proteins, essential amino acids, minerals, anti-oxidants, total phenolic contents (TPC) and total flavonoid contents (TFC) and hence, highlights lentil nutritional and medicinal potential. Sequence-related amplified polymorphism (SRAP) and amplified fragments length polymorphism (AFLP) markers were used to estimate the genetic variability at the molecular level. The existence of a considerable amount of genetic diversity among the tested lentil genotypes was also proven at the molecular level. A total of 2894 polymorphic SRAP and 1625 AFLP loci were successfully amplified using six SRAP and four AFLP primer pair combinations. Polymorphism information content (PIC) values for SRAP and AFLP markers were higher than 0.8, indicating the power and higher resolution of those marker systems in detecting molecular diversity. UPGMA (unweighted pair group method with arithmetic average) cluster analysis based on molecular data revealed large number of sub clusters among genotypes, indicating high diversity levels. The data presented here showed that FLIP2009-64L and FLIP2009-69L could be used as a significant source of yield, total protein, essential amino acids, and antioxidant properties. The results suggest potential lentil cultivation in the central region of Saudi Arabia for its nutritional and medicinal properties, as well as sustainable soil fertility crop.
Keratoconus (KC) is a progressive corneal disorder in which vision gradually deteriorates as a result of continuous conical protrusion and the consequent altered corneal curvature. While the majority of the literature focus on assessing the center of this diseased cornea, there is growing evidence of peripheral involvement in the disease process. Thus, we investigated the organization of collagen fibrils (CFs) and proteoglycans (PGs) in the periphery and center of KC corneal stroma. Three-dimensional transmission electron tomography on four KC corneas showed the degeneration of microfibrils within the CFs and disturbance in the attachment of the PGs. Within the KC corneas, the mean CF diameter of the central-anterior stroma was significantly (p ˂ 0.001) larger than the peripheral-anterior stroma. The interfibrillar distance of CF was significantly (p ˂ 0.001) smaller in the central stroma than in the peripheral stroma. PGs area and the density in the central KC stroma were larger than those in the peripheral stroma. Results of the current study revealed that in the pre- Descemet’s membrane stroma of the periphery, the degenerated CFs and PGs constitute biomechanically weak lamellae which are prone to disorganization and this suggests that the peripheral stroma plays an important role in the pathogenicity of the KC cornea.
This study was carried out to identify drought-responsive genes in a drought tolerant faba bean variety (Hassawi 2) using a suppressive subtraction hybridization approach (SSH). A total of 913 differentially expressed clones were sequenced from a differential cDNA library that resulted in a total of 225 differentially expressed ESTs. The genes of mitochondrial and chloroplast origin were removed, and the remaining 137 EST sequences were submitted to the gene bank EST database (LIBEST_028448). A sequence analysis identified 35 potentially drought stress-related ESTs that regulate ion channels, kinases, and energy production and utilization and transcription factors. Quantitative PCR on Hassawi 2 genotype confirmed that more than 65% of selected drought-responsive genes were drought-related. Among these induced genes, the expression levels of eight highly up-regulated unigenes were further analyzed across 38 selected faba bean genotypes that differ in their drought tolerance levels. These unigenes included ribulose 1,5-bisphosphate carboxylase (rbcL) gene, non-LTR retroelement reverse related, probable cyclic nucleotide-gated ion channel, polyubiquitin, potassium channel, calcium-dependent protein kinase and putative respiratory burst oxidase-like protein C and a novel unigene. The expression patterns of these unigenes were variable across 38 genotypes however, it was found to be very high in tolerant genotype. The up-regulation of these unigenes in majority of tolerant genotypes suggests their possible role in drought tolerance. The identification of possible drought responsive candidate genes in reported here is an important step toward the development of drought-tolerant genotypes that can cope with arid environments.
Purpose We investigated the tear ferning pattern and microelements of the tear film of camel and compare them with human tears and fresh plus eye lubricant. Methods The tear film pattern was investigated by light and scanning electron microscope. A small drop (1μl) of tears was placed on a glass slide at 23 degrees temperature and humidity of less than 45%. When the tears were dried, they were observed under the light microscope, Olympus BX1. The dried drop was also used to take images from an environmental scanning electron microscope. The microanalysis of the elements was done by using the STEM, JEOL 1400 transmission electron microscope. The Masmali grading scale for tear ferning was used to grade the ferning patterns. Results Light microscopy observations showed that the tear film pattern was surround by a thick peripheral homogenous layers which contained small oily droplets. The peripheral and central ferning contained very thin branches. The tear ferning at the periphery was between grades 1 to 2 whereas tear ferning pattern of the centre was between grades 0 to 1. The tear ferning pattern of human tears and fresh plus were between grades 1 to 2. The scanning electron microscope showed very tiny crystals in between the tear ferning. Edax analysis showed that mass percentage of chloride as highest in the camel tears and mass percentage of potassium was more than in the human tears but less than in the ‘Reresh plus’ lubricant. Conclusion Our observations suggest that camel tears are better quality than human tears and ‘Refresh Plus’ lubricant. This suggests that camels may have some extra tear compositions in their eyes, which help the animal to avoid the dryness in their eyes in the dry and harsh climatic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.