We consider a reformulation of mathematical programs with complementarity constraints, where by introducing an artificial variable the constraints are converted into equalities which are once but not twice differentiable. We show that the Lagrange optimality system of such a reformulation is semismooth and BD-regular at the solution under reasonable assumptions. Thus, fast local convergence can be obtained by applying the semismooth Newton method. Moreover, it turns out that the squared residual of the Lagrange system is continuously differentiable (even though the system itself is not), which opens the way for a natural globalization of the local algorithm. Preliminary numerical results are also reported.
We consider the sequential quadratic programming algorithm (SQP) applied to equalityconstrained optimization problems, where the problem data is differentiable with Lipschitzcontinuous first derivatives. For this setting, Dennis-Moré type analysis of primal superlinear convergence is presented. Our main motivation is a special modification of SQP tailored to the structure of the lifted reformulation of mathematical programs with complementarity constraints (MPCC). For this problem, we propose a special positive definite modification of the matrices in the generalized Hessian, which is suitable for globalization of SQP based on the penalty function, and at the same time can be expected to satisfy our general DennisMoré type conditions, thus preserving local superlinear convergence. (Standard quasi-Newton updates in the SQP framework require twice differentiability of the problem data at the solution for superlinear convergence.) Preliminary numerical results comparing a number of quasi-Newton versions of semismooth SQP applied to MPCC are also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.