We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.
We have investigated the interaction of a number of synthetic 20-residue peptides, corresponding to the HA2 N-terminus of the influenza virus hemagglutinin (X31 strain), with phospholipid vesicles and monolayers. Besides the wild-type sequence, two peptides were studied with mutations corresponding to those previously studied in entire HA's expressed in transfected cells [Gething et al., (1986) J. Cell. Biol. 102, 11-23]. These mutations comprised a single Glu replacement for Gly at the N-terminus ("El" mutant) or at position 4 ("E4") of the HA2 subunit and were shown to produce striking alterations in virus-induced hemolysis and syncytia formation, especially for E1. The X31 "wild-type" (wt) peptide and its E4 variant are shown here to have the capacity to insert into phosphatidylcholine (POPC) large unilamellar vesicle (LUV) membranes in a strictly pH-dependent manner, penetration being marginal at pH 7.4 and significant at pH 5.0. Bilayer insertion was evident from a shift in the intrinsic Trp fluorescence of the wt and E4 peptides and from the induction of calcein leakage from POPC LUV and correlated well with the peptides' ability at pH 5.0 to penetrate into POPC monolayers at initial surface pressures higher than 30 mN/m. By contrast, the E1 peptide was found, at pH 5.0, to bind less tightly to vesicles (assessed by a physical separation method) and to cause much less leakage of POPC LUV than the wt, even under conditions where the peptides were bound to approximately the same extent. Consistent with the correlation between leakage and penetration observed for the wt peptide at pH 5 versus 7, the E1 peptide, even at low pH, showed much less lipid-vesicle-induced shift of its Trp fluorescence than wt, caused a much slower rate of leakage of vesicle contents, and did not insert into POPC monolayers at surface pressures beyond 28.5 mN/m. Circular dichroism spectroscopy measurements of peptides in POPC SUV showed that the conformations of all three peptides are sensitive to pH, but only the wt and E4 peptides became predominantly alpha-helical at acid pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.