Signal transduction pathways downstream of receptor tyrosine kinases (RTKs) are often deregulated during oncogenesis, tumor progression, and metastasis. In particular, the peptide growth factor hormone, hepatocyte growth factor (HGF), and its specific receptor, Met tyrosine kinase, regulate cancer cell migration, thereby conferring an aggressive phenotype (Nakamura et al., J Clin Invest 106 (12):1511–1519, 2000; Huh et al., Proc Natl Acad Sci U S A 101:4477–4482, 2004). Additionally, overexpression of Met is associated with enhanced invasiveness of breast cancer cells (Edakuni et al., Pathol Int 51(3):172–178, 2001; Jin et al., Cancer 79(4):749–760, 1997; Tuck et al., Am J Pathol 148(1):225–232, 1996). Here, we review the regulation of recently identified novel downstream mediators of HGF/Met signaling, Breast tumor kinase (Brk/PTK6), and Src-associated substrate during mitosis of 68 kDa (Sam68), and discuss their relevance to mechanisms of breast cancer progression.
IntroductionProtein tyrosine kinases (PTKs) are frequently overexpressed and/or activated in human malignancies, and regulate cancer cell proliferation, cellular survival, and migration. As such, they have become promising molecular targets for new therapies. The non-receptor PTK termed breast tumor kinase (Brk/PTK6) is overexpressed in approximately 86% of human breast tumors. The role of Brk in breast pathology is unclear.MethodsWe expressed a WAP-driven Brk/PTK6 transgene in FVB/n mice, and analyzed mammary glands from wild-type (wt) and transgenic mice after forced weaning. Western blotting and immunohistochemistry (IHC) studies were conducted to visualize markers of mammary gland involution, cell proliferation and apoptosis, as well as Brk, STAT3, and activated p38 mitogen-activated protein kinase (MAPK) in mammary tissues and tumors from WAP-Brk mice. Human (HMEC) or mouse (HC11) mammary epithelial cells were stably or transiently transfected with Brk cDNA to assay p38 MAPK signaling and cell survival in suspension or in response to chemotherapeutic agents.ResultsBrk-transgenic dams exhibited delayed mammary gland involution and aged mice developed infrequent tumors with reduced latency relative to wt mice. Consistent with delayed involution, mammary glands of transgenic animals displayed decreased STAT3 phosphorylation, a marker of early-stage involution. Notably, p38 MAPK, a pro-survival signaling mediator downstream of Brk, was activated in mammary glands of Brk transgenic relative to wt mice. Brk-dependent signaling to p38 MAPK was recapitulated by Brk overexpression in the HC11 murine mammary epithelial cell (MEC) line and human MEC, while Brk knock-down in breast cancer cells blocked EGF-stimulated p38 signaling. Additionally, human or mouse MECs expressing Brk exhibited increased anchorage-independent survival and resistance to doxorubicin. Finally, breast tumor biopsies were subjected to IHC analysis for co-expression of Brk and phospho-p38 MAPK; ductal and lobular carcinomas expressing Brk were significantly more likely to express elevated phospho-p38 MAPK.ConclusionsThese studies illustrate that forced expression of Brk/PTK6 in non-transformed mammary epithelial cells mediates p38 MAPK phosphorylation and promotes increased cellular survival, delayed involution, and latent tumor formation. Brk expression in human breast tumors may contribute to progression by inducing p38-driven pro-survival signaling pathways.
Here we show that the fate of osteolytic bone metastasis depends on the balance among autophagy, anoikis resistance and ossification, and that the hepatocyte growth factor (HGF) signaling pathway seems to have an important role in orchestrating bone colonization. These findings are consistent with the pathophysiology of bone metastasis that is influenced by the cross-talk of supportive and neoplastic cells through molecular signaling networks. We adopted the strategy to target metastasis and stroma with the use of adenovirally expressed NK4 (AdNK4) and Dasatinib to block HGF/Met axis and Src activity. In human bone metastatic 1833 cells, HGF conferred anoikis resistance via Akt and Src activities and HIF-1α induction, leading to Bim isoforms degradation. When Src and Met activities were inhibited with Dasatinib, the Bim isoforms accumulated conferring anoikis sensitivity. The proviability effect of HGF, under low-nutrient stress condition, was related to a faster autophagy deactivation with respect to HGF plus Dasatinib. In the 1833 xenograft model, AdNK4 switched metastasis vasculature to blood lacunae, increasing HIF-1α in metastasis. The combination of AdNK4 plus Dasatinib gave the most relevant results for mice survival, and the following molecular and cellular changes were found to be responsible. In bone metastasis, we observed a hypoxic condition – marked by HIF-1α – and an autophagy failure – marked by p62 without Beclin-1. Then, osteolytic bone metastases were largely prevented, because of autophagy failure in metastasis and ossification in bone marrow, with osteocalcin deposition. The abnormal repair process was triggered by the dysfunctional autophagy/anoikis interplay. In conclusion, the concomitant blockade of HGF/Met axis and Src activity seemed to induce HIF-1α in metastasis, whereas the bone marrow hypoxic response was reduced. As a consequence, anoikis resistance might be hampered favoring, instead, autophagy failure and neoformation of woven bone trabeculae. Mice survival was, therefore, prolonged by overcoming an escape strategy adopted by metastatic cells by disruption of tumor–stroma coevolution, showing the importance of autophagy inhibition for the therapy of bone metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.