Trichothecenes, zearalenone (ZEN) and fumonisins are the major Fusarium mycotoxins occurring on a worldwide basis in cereal grains, animal feeds and forages. Other important Fusarium mycotoxins include moniliformin and fusaric acid. Spontaneous outbreaks of Fusarium mycotoxicoses have been recorded in Europe, Asia, New Zealand and South America and, in addition, chronic exposure occurs on a regular and more widespread scale. The metabolism and adverse effects of the Fusarium mycotoxins are considered in this review with particular reference to recent data on specific and proposed syndromes and to interactions among co-occurring mycotoxins. Within the trichothecene group, deoxynivalenol (DON) is associated with emesis, feed refusal and depressed feed intake in pigs, while T-2 toxin and diacetoxyscirpenol (DAS) are now clearly linked with oral lesions in poultry. The gut microflora of farm livestock are able to transform DON to a de-epoxy derivative. In contrast, the ovine metabolism of ZEN results in the production of five metabolites and relatively high levels of these forms may be excreted in the urine as glucuronides. There is now undisputed evidence that ZEN and its metabolites possess estrogenic activity in pigs, cattle and sheep, but T-2 toxin has also been implicated in reproductive disorders in farm livestock. Fumonisins are positively linked with pulmonary edema in pigs, leukoencephalomalacia in equines and with deranged sphingolipid metabolism in these animals. Fusarium mycotoxins have also been provisionally implicated in ovine ill-thrift, acute mortality of poultry and in duodenitis/proximal jejunitis of horses. Several Fusarium mycotoxins may co-occur in a particular feed ingredient or in compound feedingstuffs. In general, combinations of Fusarium 50 , median lethal dose; LH, luteinizing hormone; Sa, sphinganine; So, sphingosine; ELEM, equine leukoencephalomalacia; DPJ, duodenitis/proximal jejunitis; PPE, porcine pulmonary edema 0377-8401/99/$ ± see front matter # 1999 Elsevier Science B.V. All rights reserved. PII: S 0 3 7 7 -8 4 0 1 ( 9 9 ) 0 0 0 5 9 -0 mycotoxins result in additive effects, but synergistic and/or potentiating interactions have been observed and are of greater concern in livestock health and productivity. Synergistic effects have been reported between DON and fusaric acid; DON and fumonisin B 1 (FB 1 ); and DAS and the Aspergillus-derived aflatoxins. Limited evidence of potentiation between FB 1 and DON or T-2 toxin has also emerged recently. Additive and synergistic effects between known and unidentified mycotoxins may account for enhanced adverse effects observed on feeding Fusarium-contaminated diets. The potential for transmission of DON into eggs and of ZEN into porcine kidney and liver has been demonstrated. However, lactational carry-over of FB 1 appears not to occur, at least in cows and sows. It is concluded that livestock health, welfare and productivity may be severely compromised by consumption of DON, T-2 toxin, DAS, ZEN and fumonisins and by interactions am...
Mycelial yield and production of three trichothecenes, namely T-2 toxin, diacetoxyscirpenol (DAS) and neosolaniol (NEO) were compared in control (CS) and carbendazim-resistant strains (RS) ofFusarium sporotrichioides. Each strain was exposed to graded concentrations of carbendazim (0, 1, 2, and 4 μg/ml media) for 2, 5 and 7 days under shake-culture conditions at an incubation temperature of 25°C. Mycelial yield was significantly (P<0.001) affected by strain, carbendazim concentration and incubation time. The strain differences in mycelial mass at 2 days (P<0.05) became more pronounced at 5 and 7 days of incubation (P<0.001). However, mycelial growth differences between the two strains were greatest following exposure to carbendazim, with the effects becoming more divergent with time. Combined results for the three incubation times showed dose related effects in carbendazim inhibition of T-2 toxin production by CS isolates. In contrast, RS cultures exposed to the 2 μg/ml addition of carbendazim significantly increased T-2 toxin production (P<0.05 or better). At 1 and 4 μg/ml additions, T-2 toxin inhibition occurred but the effect was less marked than in the CS series. RS yielded more DAS than CS at 5 days (P<0.05) and at 7 days (P<0.01) of incubation. The major component of this strain difference arose from the effects of the 2 μg/ml addition of carbendazim (P<0.01). NEO production was also higher in RS than in CS, with the difference becoming progressively more pronounced from day 5 (P<0.05) to day 7 (P<0.01) of incubation. However, these differences reflected enhanced NEO output with carbendazim addition of 4 μg/ml (P<0.05) in day 5 extracts and of both 2 μg/ml (P<0.01) and 4 μg/ml additions (P<0.05) in day 7 samples. Moreover, the ratio of NEO to T-2 toxin production was affected by an interaction involving incubation time, strain and carbendazim dose (P<0.05 or better). On day 5, this ratio was greater in CS exposed to 2 μg/ml, but at 4 μg/ml, the ratio was higher in RS. It is concluded that carbendazim resistance induced genuine differences in the synthesis of T-2 toxin and NEO. It is suggested that the strain difference may reside in the conversion of NEO to T-2 toxin which may be sensitive to fungicide concentration. This would imply that carbendazim resistance induces changes in the terminal rather than initial phases of trichothecene biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.