System of the wind wave operational forecast in the Black Sea based on the SWAN (Simulating Waves Nearshore) numerical spectral model is represented. In the course of the system development the SWAN model was adapted to take into account the features of its operation at the Black Sea Marine Forecast Center.The model input-output is agreed with the applied nomenclature and the data representation formats. The user interface for rapid access to simulation results was developed. The model adapted to wave forecast in the Black Sea in a quasi-operational mode, is validated for 2012-2015.Validation of the calculation results was carried out for all five forecasting terms based on the analysis of two-dimensional graphs of the wave height distribution derived from the data of prognostic calculations and remote measurements obtained with the altimeter installed on the Jason-2 satellite. Calculation of the statistical characteristics of the deviations between the wave height prognostic values and the data of their measurements from the Jason-2 satellite, as well as a regression analysis of the relationship between the forecasted and measured wave heights was additionally carried out.A The forecasts carried out by the authors for the Black Sea as well as those obtained for the other World Ocean regions show that the current level of numerical methods for sea wave forecasting is in full compliance with the requirements of specialists engaged in studying and modeling the state of the ocean and the atmosphere, as well as the experts using these results for solving applied problems.Keywords: the Black Sea, SWAN, automatic system, wave forecast, altimetry, satellite measurements, wave height, validation, visualization, server. Ocean. Currently, the center continues to operate autonomously. One of the tasks of further improvement of the Black Sea Marine Forecast Center (BSMFC) operational system is related to the creation of integrated marine forecast systems based on simultaneous joint work of various forecasting models, including those intended for joint forecasting of the Black Sea circulation and waves.Joint wave and circulation forecast will permit to increase the accuracy of calculations of sea current velocity, temperature and salinity in the upper sea layer and determine the sea wave characteristics. Improving the forecast quality is achieved due to a more correct consideration of the effects of the interaction of sea waves and currents using a complex prognostic model of these phenomena.
Purpose. The work is aimed at updating the sea wave forecasting system developed in the Black Sea Marine Forecasting Center by including the block of wind wave forecast in the Sevastopol region and by improving the wave forecast accuracy using the proposed procedure for the SWAN model tuning. Methods and Results. In the updated forecasting system, the possibility of performing the joint operational sea wave forecasts for the Black Sea and the Sevastopol region (with the 5 and 1 km spatial resolutions, respectively) became possible due to the nested grid method applied. To improve accuracy of the wave forecasts, the procedure for the SWAN model tuning was proposed. It is based on changing the parameterization of the surface friction coefficient Cd(V), where V is the surface wind speed. This permits to reduce the deviations of the forecasted wave heights from those obtained from the satellite altimetry measurements. Efficiency of the proposed procedure was assessed through comparison of the forecasting results with the remote sensing data. It is shown that in the forecasts supplied with an optimal choice of functional dependence Cd(V), the scattering index between the forecasted and measured values can be reduced by 20 %. Conclusions. Represented is the updated system of the Black Sea Marine Forecasting Center intended for the joint operational sea wave forecasts in the Black Sea and in the Sevastopol region. The results of model validation have shown that the procedure proposed for tuning the SWAN model makes it possible to reduce the deviations of the forecasted wave heights from those measured by the sensors installed at the altimetry satellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.