Plastic scintillator detectors are widely used in particle physics thanks to the very good particle identification, tracking capabilities and time resolution. However, new experimental challenges and the need for enhanced performance require the construction of detector geometries that are complicated using the current production techniques. In this article we propose a new production technique based on additive manufacturing that aims to 3D print polystyrene-based scintillator. The production process and the results of the scintillation light output measurement of the 3D-printed scintillator are reported.
The impact of a nanostructured NiO/yttria-stabilized zirconia (NiO/YSZ) and NiO/gadolinia-doped ceria (NiO/GDC) anode functional layers on low-and intermediate-temperature solid oxide fuel cell (SOFC) performance is investigated. NiO/YSZ and NiO/GDC thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni, Zr-Y, and Ce-Gd targets onto commercial NiO/YSZ substrates. Anode-supported SOFCs based on magnetron sputtered YSZ and GDC electrolytes (>4 µm) with and without the nanostructured anode layers are fabricated. A direct comparison of the YSZ-and GDC-based SOFCs in temperature range of 600-800 and 400-600°C is made. The performance of cells with the nanostructured anode layers significantly increases as compared to that of the cell without it, especially at lower temperatures. Increase of cells performance was achieved by reduction of the total area-specific resistance by 26-30%.
The possibility of fabricating large‐area solid oxide fuel cells (SOFC) with thin film electrolyte using a commercial physical vapor deposition technology is investigated. Yttria‐stabilized zirconia (YSZ)/gadolinium‐doped ceria (GDC) bilayer electrolyte is successfully deposited on a 10 × 5 cm2 commercial NiO/YSZ anode support by reactive magnetron sputtering. The microstructure of the fuel cells was studied by scanning electron microscopy. Current‐voltage characteristics of fuel cells at a temperature of 750°C and their power stability under electrical load were investigated. Single cells with La0.6Sr0.4Co0.2Fe0.8O3/ Gd0.1Ce0.9O1.95 (LSCF/GDC) cathode had an open cell voltage of 1.14 V and a maximum power density of 490 mW cm−2 at 750 °C using H2/N2 gas mixture as fuel and air as the oxidant. Three‐cell planar SOFC stack using 10 × 5 cm2 anode‐supported unit cells with power density of 450 mW cm−2 at a voltage of 0.7 V per cell has been assembled and tested.
Europium doped columnar films of CsI are produced by vacuum condensation. Eu 2+ ions in the CsI:Eu films lead to the formation of a narrow (0.18 eV), intense luminescence band with a maximum at 456 nm, which is excited by x-rays, as well as by photons of various energies. The spectral and kinetic characteristics of the emission depend on the amount of activator and on the conditions under which the film is prepared and stored. The nature of the luminescence centers is determined by structural formations that contain divalent europium ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.