In this paper, a design methodology for the minimization of various performance metrics of MOS Current-Mode Logic (MCML) circuits is described. In particular, it allows to minimize the delay under a given power consumption, the power consumption under a given delay and the power-delay product. Design solutions can be evaluated graphically or by simple and effective automatic procedures implemented within the MATLAB environment. The methodology exploits the novel concepts of crossing-point current and crossing-point capacitance. A useful feature of it is that it provides the designer with useful insights into the dependence of the performance metrics on design variables and fan-out capacitance. The methodology was validated by designing several MCML circuits in an IBM 130 nm CMOS process
In this paper, a low-power design method for MCML based ring oscillators is presented. The proposed method takes into account the parasitic capacitances of the MOS transistors. To validate it, some ring oscillators with different oscillation frequencies were designed in a 0.18µm CMOS technology. SPICE simulations demonstrate the effectiveness of the design method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.