This paper proposes the use of a simulated annealing (SA) approach to the optimal design of multilayered composite plate structures. The orientation fibres and the number of layers in laminated composites play a major role in determining strength and stiffness. Therefore, the basic design problem is to determine the optimum stacking sequence of the composite laminate. The SA technique is employed to obtain the optimum fibre orientation of multilayered composite plates, so as to maximize fundamental natural frequency. The composite plate is discretized and analysed by a finite element (FE) analysis procedure using a computer program written in C language. The inverse iteration method is employed to obtain the fundamental frequency of a laminated plate with a given number of layers and fibre orientations in each layer. Both symmetric and antisymmetric fibre angles are considered. The optimum results of fibre orientations are compared with the conventional random walk (RW) method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.