As a part of a broader program for management of bacterial leaf spot, the effects of lettuce-seed treatments, greenhouse application of bactericides, and cultivars were evaluated. Seed artificially inoculated with Xanthomonas campestris pv. vitians was treated with bactericides or heat treated and evaluated for the incidence of contaminated seed and seed germination. Seed soaked in 1% sodium hypochlorite for 5 and 20 min had an incidence of contaminated seed of less than 10%. Dry-heat (1 h), hot-water (50°C, 2 h), and organic-acid treatments significantly reduced seed germination. Considering both the effects on incidence of contaminated seed and seed germination, the best treatments were soaking the seeds in 1% sodium hypochlorite for 5 or 20 min. Copper sulfate, alone or mixed with Zineb or Dithane, failed to control the disease and caused phytotoxicity. All of the other bactericides significantly reduced the severity of bacterial leaf spot. However, the differences among bactericide efficacy were too small to allow comparison between the different forms of copper used, as well as the effect of adding manganese and zinc (Dithane) or zinc alone (Zineb) to the copper product. Nevertheless, copper hydroxide alone, mixed with Zineb or mixed with Dithane, and basic copper sulfate reduced disease severity by 86.89, 78.67, 80.42, and 81.82%, respectively, without causing phytotoxicity. For the two years of cultivar evaluation, no significant difference in mean disease severity was observed among the cultivars. Based on disease incidence, the most susceptible cultivar was Bellagreen. Cvs. Ideal cos, Grand Teton, Great Lakes, Paris Island, Ithaca, and Optima showed intermediate susceptibility, and the least-susceptible cultivars were Waldmann's and Grand Rapids, both green-leaf type. There was no significant difference between the three romaine (cos) cultivars and between the two crisphead cultivars, but a significant difference was observed between the two butterhead types, Bellagreen and Optima, which had 80.04 and 48.01%, respectively, of their leaves diseased at the time of harvest.
The environmental (temperature, pH, and light) and nutritional (carbon sources) factors that affect the inhibition of mycelial growth of Venturia inaequalis by five fungi (Aureobasidium sp. (P26A), unidentified fungus (P28A), Phoma sp. (P59A), Phoma sp. (P66A), and Ophiostoma sp. (P164A)) were evaluated. Cold temperatures slightly reduced the inhibition of V. inaequalis by Phoma sp. (P66A). A neutral pH increased the inhibition by the unidentified isolates and by a Phoma sp. (P66A). Continuous darkness enhanced the inhibition of the pathogen by the isolate Aureobasidium sp., and continuous light favored the inhibition by the Phoma sp. (P66A). The conidial germination of V. inaequalis was significantly reduced by all the isolates, and the inhibition was stronger closer to the fungal colony. Ophiostoma sp. inhibited 100% of the pathogen's growth regardless of temperature, pH, and light regime. Only the presence of peptone in the medium diminished the inhibition by 8%. Since Ophiostoma sp. strongly inhibited V. inaequalis (92–100% inhibition) and was not influenced by environmental and nutritional conditions, this fungal isolate could be considered in the development of a biocontrol agent against the apple scab pathogen. Key words: apple scab, biological control, environment, nutrition.
As a part of a broader study on biological control of apple scab, caused by Venturia inaequalis, a collection of 183 microorganisms originating from apple leaf litter was evaluated for their inhibitory effects on the vegetative growth of V. inaequalis. In a first screening, based on dual culture, 31 isolates (17%) showed inhibition. From these isolates, 11 fungi were selected for quantitative evaluation based on the presence of a distinct zone of inhibition. The selected fungi were evaluated again, in a more precise test, which indicated that isolates P164A (Ophiostoma sp.), P66A (Chaetophoma sp.), P26A (Aureobasidium sp.), P59A (Phoma sp.), and P28A (unidentified) inhibited 95.3, 88.9, 85.8, 80.7, and 80.1% of mycelial growth, respectively. Inhibition by the most effective fungus (Ophiostoma sp.) lasted for more than 58 days. A test using culture filtrates, incubated over time, was carried out to determine whether the living fungus was a prerequisite for inhibition. The inhibitory effect of metabolites secreted by the selected fungi was less than 5%. This study revealed the potential of at least five fungi that could be considered in the development of a biological control agent against V. inaequalis. Key words: antifungal inhibition, apple scab, biological control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.