The complexity of biological tissue presents a challenge for engineering of mechanically compatible materials. Guimarães and colleagues discuss how understanding tissue stiffness, from extracellular matrix and single cell components to bulk tissue, facilitates the engineering of materials with life-like properties.
The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.
Novel silicate nanoplatelets that induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of any osteoinductive factor are reported. The presence of the silicate triggers a set of events that follows the temporal pattern of osteogenic differentiation. These findings underscore the potential applications of these silicate nanoplatelets in designing bioactive scaffolds for musculoskeletal tissue engineering.
A critical aspect in the development of biomaterials is the optimization of their surface properties to achieve an adequate cell response. In the present work, electrospun polycaprolactone nanofiber meshes (NFMs) are treated by radio-frequency (RF) plasma using different gases (Ar or O(2)), power (20 or 30 W), and exposure time (5 or 10 min). Morphological and roughness analysis show topographical changes on the plasma-treated NFMs. X-ray photoelectron spectroscopy (XPS) results indicate an increment of the oxygen-containing groups, mainly --OH and --C==O, at the plasma-treated surfaces. Accordingly, the glycerol contact angle results demonstrate a decrease in the hydrophobicity of plasma-treated meshes, particularly in the O(2)-treated ones. Three model cell lines (fibroblasts, chondrocytes, and osteoblasts) are used to study the effect of plasma treatments over the morphology, cell adhesion, and proliferation. A plasma treatment with O(2) and one with Ar are found to be the most successful for all the studied cell types. The influence of hydrophilicity and roughness of those NFMs on their biological performance is discussed. Despite the often claimed morphological similarity of NFMs to natural extracellular matrixes, their surface properties contribute substantially to the cellular performance and therefore those should be optimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.