We propose a mechanism to explain the nature of the damping of Rabi oscillations with an increasing driving-pulse area in localized semiconductor systems and have suggested a general approach which describes a coherently driven two-level system interacting with a dephasing reservoir. Present calculations show that the non-Markovian character of the reservoir leads to the dependence of the dephasing rate on the driving-field intensity, as observed experimentally. Moreover, we have shown that the damping of Rabi oscillations might occur as a result of different dephasing mechanisms for both stationary and nonstationary effects due to coupling to the environment. Present calculated results are found in quite good agreement with available experimental measurements.
A systematic investigation is performed on the damping of Rabi oscillations induced by an external electromagnetic field interacting with a two-level semiconductor system. We have considered a coherently driven two-level system coupled to a dephasing reservoir and shown that, to explain the dependence of the dephasing rate on the driving intensity, it is essential to consider the non-Markovian character of the reservoir. Moreover, we have demonstrated that intensity-dependent damping may be induced by various dephasing mechanisms due to stationary as well as non-stationary effects caused by coupling with the environment. Finally, present results are able to explain a variety of experimental measurements available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.