This paper concerns an international research project aimed at determining the Avogadro constant by counting the atoms in an isotopically enriched silicon crystal. The counting procedure was based on the measurement of the molar volume and the volume of an atom in two 1 kg crystal spheres. The novelty was the use of isotope dilution mass spectrometry as a new and very accurate method for the determination of the molar mass of enriched silicon. Because of an unexpected metallic contamination of the sphere surfaces, the relative measurement uncertainty, 3 × 10−8 NA, is larger by a factor 1.5 than that targeted. The measured value of the Avogadro constant, NA = 6.022 140 82(18) × 1023 mol−1, is the most accurate input datum for the kilogram redefinition and differs by 16 × 10−8 NA from the CODATA 2006 adjusted value. This value is midway between the NIST and NPL watt-balance values.
Measurements of air density determined gravimetrically and by using the CIPM-81/91 formula, an equation of state, have a relative deviation of 6.4 × 10 −5 .This difference is consistent with a new determination of the mole fraction of argon x Ar carried out in 2002 by the Korea Research Institute of Standards and Science (KRISS) and with recently published results from the LNE. The CIPM equation is based on the molar mass of dry air, which is dependent on the contents of the atmospheric gases, including the concentration of argon. We accept the new argon value as definitive and amend the CIPM-81/91 formula accordingly. The KRISS results also provide a test of certain assumptions concerning the mole fractions of oxygen and carbon dioxide in air. An updated value of the molar gas constant R is available and has been incorporated in the CIPM-2007 equation. In making these changes, we have also calculated the uncertainty of the CIPM-2007 equation itself in conformance with the Guide to the Expression of Uncertainty in Measurement, which was not the case for previous versions of this equation. The 96th CIPM meeting has accepted these changes.
The Avogadro constant links the atomic and the macroscopic properties of matter. Since the molar Planck constant is well known via the measurement of the Rydberg constant, it is also closely related to the Planck constant. In addition, its accurate determination is of paramount importance for a definition of the kilogram in terms of a fundamental constant. We describe a new approach for its determination by counting the atoms in 1 kg single-crystal spheres, which are highly enriched with the 28Si isotope. It enabled isotope dilution mass spectroscopy to determine the molar mass of the silicon crystal with unprecedented accuracy. The value obtained, NA = 6.022,140,78(18) × 10(23) mol(-1), is the most accurate input datum for a new definition of the kilogram.
A late-type supergiant which appeared in the bulge of M31 in the last observing season faded 3 bolometric magnitudes in 100 days and is now no longer detectable. We suggest the object was a nova of an unusual type. Subject headings: galaxies: individual (M31) -stars: late-type -stars: novae
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.