This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications.
Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree‐ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate‐based habitat suitability with volume measurements from ~50‐year‐old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree‐ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree‐ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as −.31. We conclude that tree responses to projected climate change are highly site‐specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.
Background: In the Netherlands, Aedes albopictus has been found each year since 2010 during routine exotic mosquito species surveillance at companies that import used tires. We developed habitat suitability models to investigate the potential risk of establishment and spread of this invasive species at these locations. Methods: We used two methodologies: first, a species distribution model based on the maximum entropy modelling approach (MaxEnt) taking into consideration updated occurrence data of the species in Europe, and secondly, a spatial logic conditional model based on the temperature requirements of the species and using land surface temperature data (LST model). Results: Suitability assessment obtained with the MaxEnt model at European level accurately reflect the current distribution of the species and these results also depict moderately low values in parts of the Netherlands, Belgium, Denmark, the British islands and southern parts of Scandinavia. Winter temperature was the variable that contributed most to the performance of the model (47.3%). The results of the LST model showed that: (i) coastal areas are suitable for overwintering of eggs; (ii) large areas in the northern part of the country have a low suitability for adult survival; and (iii) the entire country is suitable for successful completion of the life-cycle if the species is introduced after the winter months. Results of the LST model revealed that temperatures in 2012 and 2014 did not limit the overwintering of eggs or survival of adults at the locations where the species was found. By contrast, for the years 2010, 2011 and 2013, overwintering of eggs at these locations is considered unlikely. Conclusions: Results using two modelling methodologies show differences in predicted habitat suitability values. Based on the results of both models, the climatic conditions could hamper the successful overwintering of eggs of Ae. albopictus and their survival as adults in many areas of the country. However, during warm years with mild winters, many areas of the Netherlands offer climatic conditions suitable for developing populations. Regular updates of the models, using updated occurrence and climatic data, are recommended to study the areas at risk.
This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.