This study investigates genetic diversity and structure of native Egyptian cattle populations, called Baladi, as Saidi from Southern Egypt, Menufi from Mid-Delta and their F1 crosses with the French Tarentaise breed using DNA Microsatellite markers. A total of unrelated 97 individuals were genotyped utilizing eight SSR primers (ETH10, ETH225, BM1818, BM1824, BM2113, SPS115, TGLA53 and TGLA126). All utilized SSR were found to be polymorphic. The highest and lowest numbers of alleles detected were 16 and 6 at TGLA53 and SPS115 loci, respectively. Baladi-Tarentaise crosses (Bal-Tar) had the highest number of alleles over all. The PIC values of 7 loci were higher than 0.5, indicating high allelic variation of utilized markers. Estimated PIC values were up to 0.898, 0.866 and 0.873 for TGLA53 genotyped in Saidi, Menufi and Bal-Tar, respectively. Hobs values were lower than the expected ones in the native populations accompanied with positive values for Fis and significant deviation from HWE indicating inbreeding trend in native populations. Structure analysis indicated three ancestral genetic backgrounds. The native populations share two main backgrounds in almost equal percentages, while the Bal-Tar had the third one. The three populations showed low percentage of admixture. The studied Mediterranean cattle populations that belong to Egypt and France seem to have differentiated from each other with only little genetic exchange between the geographically isolated populations so local cattle is very similar.
and Implications In Africa, where general breeding and vaccination programs for chickens are absent, natural selection is a major factor in shaping genetic variation for adaptation to abiotic and biotic environmental stressors, e.g. heat, high altitude and disease. In this study two groups of chicken populations adapted to two different environments (North-African, and West-African), in addition to a synthetic commercial breed (Kuroiler), were genomically compared. Genomic comparison using SNPs between such unselected populations and the selected and genetically improved commercial one will likely result in detection of natural selection footprints and genes responsible for adaptation traits. This information may assist improving commercial lines to be more tolerant/resistant under expected climate change. Knowledge of genes involved in immunity and disease resistance could be utilized for genome selection and lessen the utilization of antibiotics which will increase chicken meat/egg quality for American consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.