The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure controlled light propagation through photonic lattice media. Particularity of the linear system characterized by the dispersionless flat band in the spectrum is the opening of new minigaps due to the "binarism." Together with the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the staggered rings found to be nondiffracting in the linear system, but can give rise to dynamically stable ringlike solutions of several types: unstaggered rings, low-power staggered rings, hour-glass-like solutions, and vortex rings with high power. The type of solutions, i.e., the energy and angular momentum circulation through the nonlinear lattice, can be controlled by suitable initial excitation of the ribbon. In addition, by controlling the system "binarism" various localized modes can be generated and guided through the system, owing to the opening of the minigaps in the spectrum. All these findings offer diverse technical possibilities, especially with respect to the high-speed optical communications and high-power lasers.
In a waveguide-type display for augmented reality, the image is injected in the waveguide and extracted in front of the eye appearing superimposed on the real world scene. An elegant and compact way of coupling these images in and out is by using blazed gratings, which can achieve high diffraction efficiencies. We report the design of blazed gratings for green light (λ = 543 nm) and a diffraction angle of 43°. The blazed gratings with a pitch of 508 nm and a fill factor of 0.66 are fabricated using grayscale electron beam lithography. We outline the subsequent replication in a polymer waveguide material with ultraviolet nanoimprint lithography and confirm a throughput efficiency of 17.4%. We finally show the in-and outcoupling of an image through two blazed gratings appearing sharp and non-distorted in the environment.
By introducing evolving disorder in the binary kagome ribbons, we study the establishment of diffusive spreading of flat band states characterized by diffractionless propagation in regular periodic ribbons. Our numerical analysis relies on controlling strength and rate of change of disorder during light propagation while tailoring binarism of the kagome ribbons in order to isolate the flat band with the gap from the rest of the ribbon's eigenvalue spectrum and study systematically its influence on diffusion. We show that the flat band plays a dominant role in the establishment of the diffusion for a given strength and rate of change of disorder, whereas the rest of the ribbon's eigenvalue spectrum induces only quantitative differences in the light spreading regimes. Due to the universality of studied phenomena, our findings may be of interest in various disordered physical systems with flat spectral bands, ranging from photonics to ultracold matter systems and plasmonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.