We analysed 54 alumina ceramic-on-ceramic bearings from total hip replacements retrieved at one centre after a mean duration of 3.5 years (0.2 to 10.6) in situ. These implants were obtained from 54 patients (16 men and 38 women) with a mean age of 67 years (33 to 88) who underwent revision for a variety of reasons. Posterior edge loading was found in the majority of these retrievals (32 out of 54). Anterosuperior edge loading occurred less often but produced a higher rate of wear. Stripe wear on the femoral heads had a median volumetric wear rate of 0.2 mm(3)/year (0 to 7.2). The wear volume on the femoral heads corresponded to the width of edge wear on the matching liner. Anteversion of the acetabular component was found to be a more important determinant than inclination for wear in ceramic bearings. Posterior edge loading may be considered to be a normal occurrence in ceramic-on-ceramic bearings, with minimal clinical consequences. Edge loading should be defined as either anterosuperior or posterior, as each edge loading mechanism may result in different clinical implications.
Traditionally, orthopaedic research has focused upon the assessment of individual components in an implanted construct. A great deal of research has investigated the durability of the metallic stem, even though this is the most robust component in the implanted system. Standards have been developed for the structural assessment of the implant and even the bone cement which holds the implant in place in the bone. However, the construct as a whole, and its short-and long-term structural integrity, are rarely assessed, and few methods have been established to monitor and predict the mechanisms leading to failure. These are necessary to ensure that any new implants entering the market will perform satisfactorily and prevent premature revision surgery.The acoustic emission (AE) technique offers the capability of monitoring structural degradation passively and in real time, and can distinguish failure mechanisms and their location through the analysis of AE parameters. In the present paper, the use of acoustic emission in orthopaedics, in particular for the evaluation of hip replacement constructs, is reviewed. Following this, three case studies undertaken at the University of Southampton are presented, in which acoustic emission on-line monitoring has been used to evaluate the performance of simulated artificial hip replacement constructs and their constituents during static and fatigue testing. In Case Study 1, the fatigue behaviour of bone cement is characterized; in Case Study 2, the residual stresses induced in the construct as a result of bone cement cure are investigated; in Case Study 3, the mechanisms leading to failure of a carbon fibre reinforced plastic hip stem during fatigue testing are characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.