The applicability of photothermal deflection spectroscopy (PDS) and the constant photocurrent method (CPM) to chemical vapor deposited and physical vapor deposited CuGaSe2 (CGSe) thin films is investigated. Process dependent variations in direct band-gap energies, Urbach tail widths, bulk and surface defect densities of the films are given as a function of composition. Differences in the PDS and CPM absorption spectra of more than one order of magnitude are found. Using the standard a-Si theory of PDS and CPM analysis, a two-layer system consisting of a defect-rich near-surface layer and a less defective bulk layer is found in device-quality films. Optical improvements due to the Ga+Se annealing step as a second stage of the growth process result in a reduced bulk defect density while the near-surface defect density remains unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.