Payment for ecosystem services (PES) is a mechanism where a consumer is able and ready to pay for the protection of the precise ecosystem service and there must be a provider such as local societies receiving an economic resource, who in return, must have the ability to maintain that ecosystem service. Economic valuation provides basis for payment for ecosystem services. Therefore, objective of this study was to evaluate tourism and carbon stock services of the Islamabad Capital Territory (ICT), Pakistan. Two forest zones (Chirpine and Scrub) of Islamabad capital territory (ICT) were selected for estimation of carbon stock and their carbon credits and carbon worth, a questionnaire-based survey was conducted for tourism as a payment for ecosystem services. The method for carbon stock assessment was systematic sampling for Chirpine forest whereas random sampling was done for scrub forest. The size of sampling plot was 17.84 m radius, and a total of 93 plots (49 Scrub zone and 44 Chirpine zone) was taken in the study area. The carbon stock of both zones (Chirpine and Scrub zone) is 22556.75 ton/ha (Chirpine 20105.79, Scrub 2450.96) and total carbon dioxide sequestered by both zone is 82557.72 ton/ha (Chirpine 73587.2, Scrub 8970.52), total carbon credits of both zone is 302160.87 (Chirpine 269328.97, Scrub 32831.9) and the carbon worth of both Chirpine and scrub zone is 4532418.92 $ (Chirpine 4039937.09$, Scrub 492481.83$). Similarly, from tourism point of view, in Shakar Parian, 94% tourists were agreed for PES whereas 6% were disagreed for the PES (the 6% tourist were disagreed to contribute for PES, 40% were agreed for Rs.5 contribution and 54% for Rs.10.). moreover, in Lake view Park, 97% tourists were agreed and 3% are disagreed (In Lake View Park 5% tourists were disagreed for the PES contribution whereas 32% were agreed for Rs.5 and 63% were for Rs.10). In Damen e Koh, around 87% tourist were agreed and 13% were disagreed, (24% were agreed for the contribution of Rs.5 and 63% tourists were agreed for the contribution of Rs.10). In Marghazar Zoo, 93% tourists were agreed (22% were agreed for contribution of Rs.5 and 71% tourist were agreed for contribution of Rs.10) and 7% are disagreed for PES whereas 7% tourists were not agreed for contribution. PES may implement to compensate forest and parks manager to ensure better management of the forests and parks. Due to prime location and scenic beauty of the ICT, it has huge potential for implementation of PES mechanism for sustainable forest management and conservation. Therefore, it is recommended that Capital Development Authority (CDA) Islamabad should devise a plan for implementation of PES in forests and parks of ICT for its sustainable management of recreational and forest resources.
Particulate matter (PM) is a major air pollutant causing serious health problems. The aim of the present study was to find out concentration of PM in ambient air and its associated health risk in Haripur city, Pakistan. Twenty-three samples were taken at various educational institutes, hospitals, recreational areas and industries in Haripur city. Concentration of PM2.5 (µg/m3) and PM10 (µg/m3) was measured with Youngteng YT-HPC 3000A portable PM counter. The results revealed that values of both PM2.5 and PM10 were above the permissible limits (35 µg/m3 for PM2.5 and 150 µg/m3 for PM10) set by Environmental Protection Agency Pakistan (Pak-EPA) in all the educational institutes, hospitals, recreational areas and industries investigated. Furthermore, significant (p<0.05) variation was found in the concentration of both PM2.5 and PM10 in all the educational institutes, hospitals, recreational areas, and industries studied. The concentration of PM2.5 was positively correlated with the concentration of PM10 in all the sampling sites. Therefore, from 1-14 scale standard of health index, the values of PM2.5 and PM10 exhibited that the ambient air quality of Haripur city Pakistan is under high risk. If the regulatory authorities such as Environmental Protection Agency, Health Department and Local Government monitor PM pollution in different settings of Haripur city, then a decrease can be possible in the pollution level. The remedies that can be taken to overcome the problem of ambient air pollution such as PM are plantation of trees at the sites where there are higher levels of air pollutants and use of masks on personal protection basis along with implementation of pollution control system in industries of Hattar Industrial Estate Haripur city, Pakistan.
The marble industry is growing in Pakistan, and Khyber Pakhtunkhwa province is the largest producer of marble tiles in Pakistan. Marble production consumes a considerable amount of water during its life cycle stages and impacts various environmental compartments, such as air, water, and soil; therefore, this study aimed to quantify the environmental impacts, water footprint, and cumulative energy demand of one-tonne marble tile manufactured in a small industrial estate Mardan (SIEM), Pakistan, and provide recommendations to improve its environmental impact profile. The study covers water consumption, energy use, and associated environmental impacts of raw materials and processes through different stages of the marble life-cycle during 2017–2018. The cradle-to-gate (extraction to factory gate or store house) life cycle assessment approach was followed in this study. The functional unit for the current study was one tonne of finished marble tile produced. Primary data from the field surveys and secondary data were modeled using the water scarcity index (WSI), CML 2000 v.2.05 methodology, and the cumulative energy demand indicator present by default in SimaPro v.8.3 software. The total water footprint required for one tonne of finished marble tile was 3.62 cubic meters per tonne (m3/t), with electricity consumed at processing units contributing to environmental burdens the most. Similarly, electricity consumed (at processing units and during polishing) and transportation of finished marble tile to the local market were responsible for global warming potential (388 kg CO2 eq/tonne tile), human toxicity (84.34 kg 1,4-DB-eq/tonne), freshwater aquatic ecotoxicity (94.97kg 1,4-DB eq/tonne) and abiotic depletion (7.1 × 10−5 kg Sb eq/tonne). The results of our study follow other marble tile LCA studies conducted globally (such as in Turkey and Italy), which also reported a high contribution to GWP, AP, EP, and HT due to electricity and fossil fuels consumption. The total cumulative energy demand (CED) was calculated as 5863.40 MJ (Mega Joule), with most energy usage associated with non-renewable fossil fuel sources. The results indicated that reducing electricity (using standard automatic machinery) and waste materials, especially paper and plastic wastes, can reduce environmental impacts. Most of the surveyed industrial units did not have wastewater treatment and recycling plants, and wastewater directly flows to nearby freshwater bodies and terrestrial ecosystems. These wastewaters should be adequately treated before being discharged into freshwater aquatic bodies. Environmental impacts must be improved by using the latest automatic machinery, reducing waste materials generation, reducing the distance between processing units and the market, and installing wastewater recycling plants.
This article describes the environmental impacts of producing a single seedling in forest nurseries of selected districts (i.e., Haripur, Abbottabad, and Mansehra) of Hazara Division of Khyber Pakhtunkhwa, Pakistan using the life cycle assessment (LCA) approach. This study was based on the cradle-to-gate approach which begins with the pre-nursery stage and progresses toward the main nursery before transplanting seedlings into the plantation site. Data or life cycle inventory (LCI) of seedling production were collected through questionnaire surveys and personal meetings with forest nurseries managers and workers regarding consumption of different inputs such as electricity, diesel, fertilizers, herbicides, and polyethylene bags, organic manure, and water consumption. The SimaPro software version 8.5 and the CML2000 v2.05 environmental model was applied to perform life cycle impact assessment (LCIA) for a single seedling production in forest nurseries in the study area. In line with the objectives of the study, primary data regarding inputs and outputs of the nurseries were collected from 35 nurseries in the study area by using a random questionnaire method. In addition, secondary data were taken from online databases such as Eco-invent v.3.2 CORRIM and peer-reviewed published literature. For this study, a functional unit of a single seedling was considered. Production weighted average data were modeled in the latest environmental modeling software i.e., SimaPro v.8.5 for ten US-EPA most wanted environmental impacts, such as global warming potential (GWP), abiotic depletion (AD), eutrophication potential (EP), acidification potential (AP), freshwater aquatic eco-toxicity (FAE), marine water eco-toxicity (MWE), terrestrial eco-toxicity (TE), ozone layer depletion (OLD), photochemical oxidation (PO), and human toxicity (HT). The results showed that the highest environmental impact posed by a single seedling was marine aquatic eco-toxicity (11.31360 kg 1,4-DB eq), followed by global warming potential (0.02945 kg CO2 eq) and (0.01227 kg 1,4-DB eq) human toxicity. The primary reason for these environmental burdens was the use of synthetic fertilizers in forest nurseries and the consumption of fossil fuels in nursery mechanization and transportation activities. The total cumulative energy demand for a single seedling was (0.800 MJ) with more than 90% contribution from fossil fuel energy resources such as petrol and diesel. It is therefore highly recommended to use renewable energy resources and organic fertilizers instead of chemical fertilizers in forest nurseries to avoid and minimize greenhouse gas emissions (GHS) and other toxic emissions in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.