Homoepitaxial growth film for (001), (110) and (111) Ni substrates is investigated by means of molecular dynamics (MD) simulation. Embedded atom method (EAM) is considered to represent the interaction potential between nickel atoms. The simulation is performed at 300[Formula: see text]K using an incident energy of 0.06[Formula: see text]eV. In this study, the deposition process is performed periodically and the period, [Formula: see text], is relative to a perfect layer filling. The coverage rate of the actual expected level, [Formula: see text], can be considered a determinant for thin-film growth of nickel. The [Formula: see text] level is the most filled level during the deposition on (001) substrate, while it is the less filled one in the case of (111) substrate. Moreover, the upper level is the one which is responsible for the surface roughness and the appearance time of an upper layer may also be a factor influencing the surface roughness. The deposition on (111) substrate induces the most rigorous surface with a rapid appearance time of the upper layers. The [Formula: see text] layers are almost completely filled for all substrates. The [Formula: see text] and lower layers are completely filled for (001) and (110) substrates while for (111) substrate the completely filled layers are [Formula: see text] and lower ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.