In microsystem technology a large range of different materials will be available only after the necessary micromanufacturing techniques have been developed or adapted. Existing manufacturing techniques are structuring or shaping techniques producing three-dimensional microstructures out of silicon (silicon etching, silicon surface micromechanics), mostly unfilled plastics (lithographic techniques, injection molding, hot embossing, reaction molding) or a few pure metals or binary alloys (electroforming).The choice of materials for microcomponents is determined by the function and conditions of use of microsystems. Especially the range of metals is still restricted considerably because the only processes available are electroforming and thin-layer techniques.It is for these reasons that we are developing various processes for manufacturing three-dimensional metal microstructures. In addition to direct electroforming of injection molding lost plastic micromolds, these are a new microcasting process and Micro Metal Injection Molding (Micro MIM). Microstructures have already been molded from mold inserts made by micromechanical cutting or by the LIGA technique. The results achieved, and future prospects, are outlined below.
In this study, we report on the application of multiple energy nitrogen ion implantation for the electrical isolation of electronic devices on monoclinic β-Ga2O3. By the introduction of uniformly distributed midgap damage-related levels in the Ga2O3 crystal lattice, we are able to increase the sheet resistances by more than 9 orders of magnitude to ≥1013 Ω/sq which remains stable up to annealing temperatures of 600 °C carried out for 60 s under a nitrogen atmosphere. At higher annealing temperatures, the damage-related trap levels are being removed causing a significant drop of the sheet resistance down to 4 × 105 Ω/sq for annealing temperatures of 800 °C. This effect is preceded by a structural recovery of the implantation damages via the recrystallization of the crystal lattice at already 400 °C as verified by x-ray diffraction measurements. The extracted activation energies of the deep states controlling the high resistivity of Ga2O3 after implantation are in the range of 0.7 eV, showing a strong correlation with the annealing temperature dependence of the sheet resistance and thus supporting the theory of a damage-induced isolation mechanism.
One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes. Here we present the deterministic integration of a single solid-state qubit, the nitrogen-vacancy (NV) center, with a photonic platform consisting exclusively of SiO 2 grown thermally on a Si substrate. The platform stands out by its ultra-low fluorescence and the ability to produce various passive structures such as high-Q microresonators and mode-size converters. By numerical analysis an optimal structure for the efficient coupling of a dipole emitter to the guided mode could be determined. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope and the on-chip excitation of the quantum emitter as well as the coupling of single photons to the guided mode of the integrated structure could be demonstrated. Our approach shows the potential of this platform as a robust nanoscale interface of on-chip photonic structures with solid-state qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.